npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

server-shannon-thinking

v0.1.0

Published

MCP server for applying a Claude Shannon-inspired problem-solving pattern

Readme

shannon-thinking

An MCP server demonstrating Claude Shannon's systematic problem-solving methodology. This server provides a tool that helps break down complex problems into structured thoughts following Shannon's approach of problem definition, mathematical modeling, and practical implementation.

Overview

Claude Shannon, known as the father of information theory, approached complex problems through a systematic methodology:

  1. Problem Definition: Strip the problem to its fundamental elements
  2. Constraints: Identify system limitations and boundaries
  3. Model: Develop mathematical/theoretical frameworks
  4. Proof/Validation: Validate through formal proofs or experimental testing
  5. Implementation/Experiment: Design and test practical solutions

This MCP server demonstrates this methodology as a tool that helps guide systematic problem-solving through these stages.

Installation

NPX

{
  "mcpServers": {
    "shannon-thinking": {
      "command": "npx",
      "args": [
        "-y",
        "shannon-thinking@latest"
      ]
    }
  }
}

Usage

The server provides a single tool named shannonthinking that structures problem-solving thoughts according to Shannon's methodology.

Each thought must include:

  • The actual thought content
  • Type (problem_definition/constraints/model/proof/implementation)
  • Thought number and total thoughts estimate
  • Confidence level (uncertainty: 0-1)
  • Dependencies on previous thoughts
  • Explicit assumptions
  • Whether another thought step is needed

Additional capabilities:

  • Revision: Thoughts can revise earlier steps as understanding evolves
  • Recheck: Mark steps that need re-examination with new information
  • Experimental Validation: Support for empirical testing alongside formal proofs
  • Implementation Notes: Practical constraints and proposed solutions

Example Usage

const thought = {
  thought: "The core problem can be defined as an information flow optimization",
  thoughtType: "problem_definition",
  thoughtNumber: 1,
  totalThoughts: 5,
  uncertainty: 0.2,
  dependencies: [],
  assumptions: ["System has finite capacity", "Information flow is continuous"],
  nextThoughtNeeded: true,
  // Optional: Mark as revision of earlier definition
  isRevision: false,
  // Optional: Indicate step needs recheck
  recheckStep: {
    stepToRecheck: "constraints",
    reason: "New capacity limitations discovered",
    newInformation: "System shows non-linear scaling"
  }
};

// Use with MCP client
const result = await client.callTool("shannonthinking", thought);

Features

  • Iterative Problem-Solving: Supports revisions and rechecks as understanding evolves
  • Flexible Validation: Combines formal proofs with experimental validation
  • Dependency Tracking: Explicitly tracks how thoughts build upon previous ones
  • Assumption Management: Requires clear documentation of assumptions
  • Confidence Levels: Quantifies uncertainty in each step
  • Rich Feedback: Formatted console output with color-coding, symbols, and validation results

Development

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

# Watch mode during development
npm run watch

Tool Schema

The tool accepts thoughts with the following structure:

interface ShannonThought {
  thought: string;
  thoughtType: "problem_definition" | "constraints" | "model" | "proof" | "implementation";
  thoughtNumber: number;
  totalThoughts: number;
  uncertainty: number; // 0-1
  dependencies: number[];
  assumptions: string[];
  nextThoughtNeeded: boolean;
  
  // Optional revision fields
  isRevision?: boolean;
  revisesThought?: number;
  
  // Optional recheck field
  recheckStep?: {
    stepToRecheck: ThoughtType;
    reason: string;
    newInformation?: string;
  };
  
  // Optional validation fields
  proofElements?: {
    hypothesis: string;
    validation: string;
  };
  experimentalElements?: {
    testDescription: string;
    results: string;
    confidence: number; // 0-1
    limitations: string[];
  };
  
  // Optional implementation fields
  implementationNotes?: {
    practicalConstraints: string[];
    proposedSolution: string;
  };
}

When to Use

This thinking pattern is particularly valuable for:

  • Complex system analysis
  • Information processing problems
  • Engineering design challenges
  • Problems requiring theoretical frameworks
  • Optimization problems
  • Systems requiring practical implementation
  • Problems that need iterative refinement
  • Cases where experimental validation complements theory