npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

structlm

v1.1.0

Published

Structured output generation and data parsing tool geared towards LLMs

Readme

StructLM

Structured output generation and data parsing tool geared towards LLMs.

StructLM is a TypeScript library that helps you define JSON schemas with a clean, functional API and generate structured output descriptions for Large Language Models (LLMs). It provides a custom object notation format that is more readable and requires less input tokens.

Why StructLM?

  • Compact schema definition: StructLM uses a proprietary object notation that is more compact and requires less input tokens than JSON schemas.

  • More expressive validation: StructLM uses serializable validation functions to validate data. These functions are then used to generate "hints" for LLMs, and to validate the output returned by LLMs.

  • No accuracy loss: Despite being more compact, StructLM does not lose any accuracy when generating structured output, when compared to JSON schemas. See BENCHMARKS.md for more details on our benchmarks.

Benchmarks

This is a benchmark of StructLM vs JSON Schema, using Claude 3.5 Haiku. For the full benchmark, see BENCHMARKS.md.

StructLM vs JSON Schema

Simple Object

  • JSON-Schema: 414 tokens (average)
  • StructLM: 222 tokens (average)
  • Reduction: 46.4% (average)
  • Accuracy: Equal

Complex Object

  • JSON-Schema: 1460 tokens (average)
  • StructLM: 610 tokens (average)
  • Reduction: 58.2% (average)
  • Accuracy: StructLM is slightly better (+0.4% on average)

Schema with custom validations

  • JSON-Schema: 852 tokens (average)
  • StructLM: 480 tokens (average)
  • Reduction: 43.7% (average)
  • Accuracy: Equal

Installation

npm install structlm

Quick Start

import { s } from 'structlm';

// Define a user schema
const userSchema = s.object({
  name: s.object({
    first: s.string(),
    last: s.string()
  }),
  age: s.number(),
  active: s.boolean(),
  tags: s.array(s.string())
});

// Generate schema description for LLM
console.log(userSchema.stringify());
// Output: "{ name: { first: string, last: string }, age: number, active: boolean, tags: [string] }"

// Parse and validate JSON data
const userData = userSchema.parse('{"name":{"first":"John","last":"Doe"},"age":30,"active":true,"tags":["developer","typescript"]}');
// Returns: { name: { first: "John", last: "Doe" }, age: 30, active: true, tags: ["developer", "typescript"] }

Simple LLM Integration

Here's a complete example showing how to use StructLM with an LLM to extract structured data:

import { s } from 'structlm';

// 1. Define your schema
const contactSchema = s.object({
  name: s.string(),
  email: s.string().validate(email => email.includes('@')),
  phone: s.string(),
  company: s.string()
});

// 2. Create your prompt with the schema
const text = "Contact John Doe at [email protected] or call (555) 123-4567. He works at Tech Corp.";

const prompt = `
Extract contact information from the following text and return it as JSON matching this structure:
${contactSchema.stringify()}

Text: "${text}"

Return only the JSON object, no additional text.`;

// The schema.stringify() outputs: 
// { name: string, email: string /* email=>email.includes('@') */, phone: string, company: string }

// 3. Send prompt to LLM (the LLM returns this JSON string)
const llmResponse = `{
  "name": "John Doe",
  "email": "[email protected]", 
  "phone": "(555) 123-4567",
  "company": "Tech Corp"
}`;

// 4. Parse and validate the LLM response
const contact = contactSchema.parse(llmResponse);
// Returns: { name: "John Doe", email: "[email protected]", phone: "(555) 123-4567", company: "Tech Corp" }

// The parse() method validates the email format and ensures all required fields are present

API Reference

For the specification of the custom object notation, see SPECIFICATION.md.

Basic Types

s.string()

Creates a string schema.

const nameSchema = s.string();
console.log(nameSchema.stringify()); // "string"

// Parse and validate a string
const name = nameSchema.parse('"John"'); // "John"

s.number()

Creates a number schema.

const ageSchema = s.number();
console.log(ageSchema.stringify()); // "number"

// Parse and validate a number
const age = ageSchema.parse('25'); // 25

s.boolean()

Creates a boolean schema.

const activeSchema = s.boolean();
console.log(activeSchema.stringify()); // "boolean"

// Parse and validate a boolean
const isActive = activeSchema.parse('true'); // true

Complex Types

s.array(itemSchema)

Creates an array schema with specified item type.

const numbersSchema = s.array(s.number());
console.log(numbersSchema.stringify()); // "[number]"

// Parse and validate an array
const numbers = numbersSchema.parse('[1, 2, 3, 4]'); // [1, 2, 3, 4]

const usersSchema = s.array(s.object({
  name: s.string(),
  age: s.number()
}));
console.log(usersSchema.stringify()); 
// "[ { name: string, age: number } ]"

// Parse complex array
const users = usersSchema.parse('[{"name":"John","age":30},{"name":"Jane","age":25}]');
// Returns: [{ name: "John", age: 30 }, { name: "Jane", age: 25 }]

s.object(shape)

Creates an object schema with specified properties.

const personSchema = s.object({
  name: s.string(),
  age: s.number(),
  address: s.object({
    street: s.string(),
    city: s.string(),
    zipCode: s.string()
  })
});

console.log(personSchema.stringify());
// "{ name: string, age: number, address: { street: string, city: string, zipCode: string } }"

// Parse and validate an object
const person = personSchema.parse(`{
  "name": "John Doe",
  "age": 30,
  "address": {
    "street": "123 Main St",
    "city": "Anytown",
    "zipCode": "12345"
  }
}`);
// Returns typed object with validation

Validation

.validate(fn)

Adds custom validation using a JavaScript function.

const emailSchema = s.string().validate(email => email.includes('@'));
const positiveNumberSchema = s.number().validate(n => n > 0);
const adultAgeSchema = s.number().validate(age => age >= 18);

// Chaining validation with schema definition
const userSchema = s.object({
  email: s.string().validate(email => email.includes('@')),
  age: s.number().validate(age => age >= 0),
  username: s.string().validate(name => name.length >= 3)
});

Type Inference

StructLM provides full TypeScript type inference:

import { s, Infer } from 'structlm';

const userSchema = s.object({
  name: s.string(),
  age: s.number(),
  active: s.boolean()
});

type User = Infer<typeof userSchema>;
// User = { name: string; age: number; active: boolean; }

Advanced Examples

Nested Complex Schema

const apiResponseSchema = s.object({
  status: s.string().validate(s => ['success', 'error'].includes(s)),
  data: s.object({
    users: s.array(s.object({
      id: s.number(),
      profile: s.object({
        name: s.object({
          first: s.string(),
          last: s.string()
        }),
        contact: s.object({
          email: s.string().validate(email => email.includes('@')),
          phone: s.string()
        })
      }),
      permissions: s.array(s.string()),
      metadata: s.object({
        createdAt: s.string(),
        lastLogin: s.string(),
        loginCount: s.number().validate(n => n >= 0)
      })
    }))
  }),
  pagination: s.object({
    page: s.number().validate(n => n > 0),
    limit: s.number().validate(n => n > 0),
    total: s.number().validate(n => n >= 0)
  })
});

console.log(apiResponseSchema.stringify());
// Outputs clean, readable schema description

Validation Examples

// Email validation
const emailSchema = s.string().validate(email => {
  const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;
  return emailRegex.test(email);
});

// Age validation
const ageSchema = s.number().validate(age => age >= 0 && age <= 120);

// Username validation
const usernameSchema = s.string().validate(username => {
  return username.length >= 3 && 
         username.length <= 20 && 
         /^[a-zA-Z0-9_]+$/.test(username);
});

// Complex object with multiple validations
const registrationSchema = s.object({
  username: usernameSchema,
  email: emailSchema,
  age: ageSchema,
  password: s.string().validate(pwd => pwd.length >= 8),
  confirmPassword: s.string(),
  acceptTerms: s.boolean().validate(accepted => accepted === true)
});

Why StructLM?

  • LLM-Optimized: The proprietary object notation is specifically designed to be clear and unambiguous for AI models
  • Lightweight: Zero dependencies, focused solely on schema definition and output generation
  • Developer-Friendly: Clean API, full TypeScript support, and comprehensive validation
  • Flexible: Works with any LLM or AI service. (Reliability may vary)

Contributing

We welcome contributions! Please open an issue or submit a pull request on GitHub.

License

Apache 2.0 License

Support