npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

tibet-core

v0.1.1

Published

TIBET: Transaction/Interaction-Based Evidence Trail - The Linux of AI Provenance

Readme

TIBET Core

The Linux of AI Provenance

PyPI npm IETF Draft

A minimal, embeddable provenance engine for any device. From microcontrollers to cloud servers.

What is TIBET?

Transaction/Interaction-Based Evidence Trail

TIBET captures the four dimensions of every AI action:

| Dimension | Dutch | Meaning | |-----------|-------|---------| | ERIN | "Er in" | What's IN the action (content) | | ERAAN | "Er aan" | What's attached (dependencies) | | EROMHEEN | "Er omheen" | Context around it (environment) | | ERACHTER | "Er achter" | Intent behind it (why) |

Installation

Python

pip install tibet-core

JavaScript/Node.js

npm install tibet-core

Rust

[dependencies]
tibet-core = "0.1"

Quick Start

Python

from tibet_core import TibetEngine

engine = TibetEngine()

# Create a provenance token
token = engine.create_token(
    token_type="action",
    erin="User requested translation",
    eraan=["model_v1", "tokenizer_v2"],
    eromheen='{"env": "production"}',
    erachter="Fulfilling user request",
    actor="agent_001"
)

print(f"Token ID: {token.id}")
print(f"Valid: {token.verify()}")
print(f"JSON: {token.to_json()}")

JavaScript

import { TibetEngine } from 'tibet-core';

const engine = new TibetEngine();

const tokenJson = engine.create_token(
    "action",
    "User requested translation",
    JSON.stringify(["model_v1", "tokenizer_v2"]),
    '{"env": "production"}',
    "Fulfilling user request",
    "agent_001",
    null  // no parent
);

const token = JSON.parse(tokenJson);
console.log(`Token ID: ${token.id}`);
console.log(`Valid: ${engine.verify(tokenJson)}`);

Rust

use tibet_core::TibetEngine;

let engine = TibetEngine::new();

let token = engine.create_token(
    "action",
    "User requested translation",
    &["model_v1", "tokenizer_v2"],
    r#"{"env": "production"}"#,
    "Fulfilling user request",
    "agent_001",
    None,
);

assert!(token.verify());

Chaining Tokens

Create audit trails by linking tokens:

# Parent action
request = engine.create_token(
    token_type="request",
    erin="Translate 'hello' to Dutch",
    eraan=[],
    eromheen='{"user": "alice"}',
    erachter="User wants translation",
    actor="user_001"
)

# Child response (linked to parent)
response = engine.create_token(
    token_type="response",
    erin="Hallo",
    eraan=["gpt-4"],
    eromheen='{"latency_ms": 150}',
    erachter="Translation completed",
    actor="ai_agent",
    parent_id=request.id  # Chain link!
)

print(f"Parent: {request.id}")
print(f"Child parent_id: {response.parent_id}")  # Same as request.id

Why TIBET?

Regulatory Compliance

  • GDPR Article 22 (automated decision-making)
  • EU AI Act (transparency requirements)
  • SOC 2 / ISO 27001 (audit trails)

6G Ready

  • Designed for AI-native networks (ITU IMT-2030)
  • Referenced in IETF 6G AI agent drafts
  • Minimal footprint for edge devices

Cryptographically Secure

  • Ed25519 signatures
  • Tamper-evident chains
  • Verifiable without central authority

Size Comparison

| Component | Size | |-----------|------| | tibet-core (Rust) | ~50KB | | tibet-core (WASM) | ~100KB | | tibet-core (Python wheel) | ~2MB | | Linux kernel (minimal) | ~300KB |

IETF Standardization

TIBET is being standardized at the IETF:

W3C Alignment

TIBET aligns with W3C standards:

  • Verifiable Credentials 2.0 - Token structure compatible
  • Decentralized Identifiers (DIDs) - Actor identification
  • JSON-LD - Semantic context in EROMHEEN

Architecture

┌─────────────────────────────────────────────────────────────┐
│                    TIBET ECOSYSTEM                          │
├─────────────────────────────────────────────────────────────┤
│   ┌─────────────────┐                                       │
│   │  tibet-core     │  ← 50KB Rust, minimal deps           │
│   │  (the kernel)   │    create_token, verify, chain       │
│   └────────┬────────┘                                       │
│            │                                                │
│   ┌────────┴────────┬──────────────┬──────────────┐        │
│   ▼                 ▼              ▼              ▼        │
│ tibet-c        tibet-wasm    tibet-python   tibet-js       │
│ (embedded)     (browser)     (PyPI)         (npm)          │
└─────────────────────────────────────────────────────────────┘

Credits

  • Specification: Jasper van de Meent (Humotica)
  • Implementation: Root AI (Claude) & Jasper van de Meent
  • License: MIT OR Apache-2.0

Links


"The Linux of AI Provenance" - Making audit trails as universal as the kernel.