timetable-sa
v2.0.0
Published
Generic, unopinionated Simulated Annealing library for constraint satisfaction problems. Solve timetabling, scheduling, resource allocation, and any optimization problem with custom constraints.
Maintainers
Readme
timetable-sa v2.0
Generic, Unopinionated Simulated Annealing Library for Constraint Satisfaction Problems
A powerful TypeScript library that solves ANY constraint-satisfaction and optimization problem using Simulated Annealing. Perfect for timetabling, scheduling, resource allocation, and custom optimization tasks.
What's New in v2.0
v2.0 is a complete rewrite that transforms timetable-sa from a university-specific timetabling solver into a truly generic optimization library:
- Zero Domain Assumptions: The core knows nothing about timetables, rooms, or any specific domain
- User-Defined Everything: You define your state, constraints, and move operators
- Type-Safe & Generic: Full TypeScript support with
<TState>generics - Maximum Flexibility: Solve scheduling, allocation, planning, or any optimization problem
Features
- Two-phase optimization (hard constraints → soft constraints)
- Adaptive operator selection based on success rates
- Reheating mechanism to escape local minima
- Comprehensive logging and violation tracking
- Full TypeScript type safety
- Zero dependencies for core library
Installation
npm install timetable-saQuick Start
Here's a minimal example showing how to solve a simple constraint-satisfaction problem:
import { SimulatedAnnealing } from 'timetable-sa';
import type { Constraint, MoveGenerator, SAConfig } from 'timetable-sa';
// 1. Define your state type
interface MyState {
assignments: Array<{ task: string; worker: string; time: number }>;
}
// 2. Define constraints
class NoWorkerConflict implements Constraint<MyState> {
name = 'No Worker Conflict';
type = 'hard' as const;
evaluate(state: MyState): number {
// Check if any worker is assigned to multiple tasks at the same time
const conflicts = new Set();
for (let i = 0; i < state.assignments.length; i++) {
for (let j = i + 1; j < state.assignments.length; j++) {
const a = state.assignments[i];
const b = state.assignments[j];
if (a.worker === b.worker && a.time === b.time) {
conflicts.add(i);
}
}
}
return conflicts.size === 0 ? 1 : 0; // 1 = satisfied, 0 = violated
}
}
// 3. Define move operators
class ChangeTime implements MoveGenerator<MyState> {
name = 'Change Time';
canApply(state: MyState): boolean {
return state.assignments.length > 0;
}
generate(state: MyState, temperature: number): MyState {
const newState = JSON.parse(JSON.stringify(state));
const randomIndex = Math.floor(Math.random() * newState.assignments.length);
newState.assignments[randomIndex].time = Math.floor(Math.random() * 10);
return newState;
}
}
// 4. Configure and run
const initialState: MyState = {
assignments: [
{ task: 'Task A', worker: 'Alice', time: 0 },
{ task: 'Task B', worker: 'Bob', time: 0 },
{ task: 'Task C', worker: 'Alice', time: 0 }, // Conflict!
],
};
const constraints = [new NoWorkerConflict()];
const moveGenerators = [new ChangeTime()];
const config: SAConfig<MyState> = {
initialTemperature: 100,
minTemperature: 0.01,
coolingRate: 0.99,
maxIterations: 10000,
hardConstraintWeight: 1000,
cloneState: (state) => JSON.parse(JSON.stringify(state)),
};
const solver = new SimulatedAnnealing(initialState, constraints, moveGenerators, config);
const solution = solver.solve();
console.log('Solution found!');
console.log(`Fitness: ${solution.fitness}`);
console.log(`Hard violations: ${solution.hardViolations}`);
console.log(`State:`, solution.state);Core Concepts
1. State
Your state represents the current solution. It can be ANY TypeScript type - including custom time slot definitions:
// Example 1: Timetabling with custom time slots
interface TimetableState {
schedule: ScheduleEntry[];
availableTimeSlots: TimeSlot[]; // YOU define this structure
rooms: Room[];
}
interface TimeSlot {
day: string; // or number, or Date
startTime: string; // "08:00", "14:30", etc. - your choice
endTime: string;
// Add ANY fields you need
period?: number;
isBreakTime?: boolean;
}
// Example 2: Hospital shifts (no "time slots", different concept)
interface ShiftState {
shifts: Map<string, Shift[]>;
employees: Employee[];
}You have complete freedom to define what time slots mean in your domain, or not use them at all!
2. Constraints
Constraints evaluate how "good" a state is:
interface Constraint<TState> {
name: string;
type: 'hard' | 'soft'; // Hard must be satisfied, soft are preferred
weight?: number; // For soft constraints (default: 10)
evaluate(state: TState): number; // Returns 0-1 (0 = violated, 1 = satisfied)
describe?(state: TState): string | undefined; // Optional violation description
}See full documentation below for examples.
Solution Output
The solver returns a comprehensive solution:
interface Solution<TState> {
state: TState; // Best state found
fitness: number; // Final fitness (lower is better)
hardViolations: number; // Number of hard constraint violations
softViolations: number; // Number of soft constraint violations
iterations: number; // Total iterations performed
reheats: number; // Number of reheating events
finalTemperature: number; // Final temperature
violations: Violation[]; // Detailed list of violations
operatorStats: OperatorStats; // Performance of each move operator
}Use Cases
This library can solve ANY constraint-satisfaction problem:
- Timetabling: University courses, school schedules, exam scheduling (with YOUR custom time slot definitions)
- Shift Scheduling: Nurse rosters, employee shifts, security patrols
- Resource Allocation: Meeting rooms, equipment, vehicles
- Planning: Project tasks, delivery routes, production schedules
- Assignment: Jobs to workers, students to classes
- Coloring: Graph coloring, map coloring, frequency assignment
- Packing: Bin packing, container loading
- Custom: Any problem with constraints and objectives
API Reference
SimulatedAnnealing<TState>
class SimulatedAnnealing<TState> {
constructor(
initialState: TState,
constraints: Constraint<TState>[],
moveGenerators: MoveGenerator<TState>[],
config: SAConfig<TState>
);
solve(): Solution<TState>;
getStats(): OperatorStats;
}Configuration
interface SAConfig<TState> {
// Core parameters
initialTemperature: number; // Starting temperature (e.g., 1000)
minTemperature: number; // Stopping temperature (e.g., 0.01)
coolingRate: number; // Cooling factor 0-1 (e.g., 0.995)
maxIterations: number; // Max iterations (e.g., 50000)
hardConstraintWeight: number; // Penalty for hard constraints (e.g., 10000)
// State management
cloneState: (state: TState) => TState;
// Optional: Reheating (escape local minima)
reheatingThreshold?: number; // Iterations without improvement before reheating
reheatingFactor?: number; // Temperature multiplication factor (default: 2.0)
maxReheats?: number; // Maximum reheating events (default: 3)
// Optional: Logging
logging?: {
enabled?: boolean;
level?: 'debug' | 'info' | 'warn' | 'error' | 'none';
logInterval?: number;
output?: 'console' | 'file' | 'both';
filePath?: string;
};
}Two-Phase Optimization
The solver uses a two-phase approach:
Phase 1: Eliminate hard constraint violations
- Focuses exclusively on satisfying hard constraints
- Refuses moves that increase hard violations
Phase 2: Optimize soft constraints
- Maintains hard constraint satisfaction
- Optimizes soft constraint satisfaction
This ensures hard constraints are always satisfied before optimizing for preferences.
Adaptive Operator Selection
The solver tracks success rates of each move operator and adaptively selects the most effective ones. Operators with higher success rates are selected more frequently (70% weighted selection + 30% random exploration).
Documentation
Comprehensive documentation is available in the docs/ directory:
- Getting Started - Your first program with timetable-sa
- Core Concepts - Understanding states, constraints, and moves
- Configuration Guide - Detailed parameter tuning
- Advanced Features - Two-phase optimization, reheating, adaptive operators
- API Reference - Complete API documentation
- Examples - Complete working examples
- Migration Guide - Migrating from v1.x to v2.0
Examples
See the examples/timetabling/ directory for a complete university timetabling implementation using v2.0.
Run the example:
npm run example:timetablingMigration from v1.x
v2.0 is a complete rewrite with breaking changes. The old v1 API is not compatible.
Old v1 API (domain-specific):
const solver = new SimulatedAnnealing(rooms, lecturers, classes, config);New v2 API (generic):
const solver = new SimulatedAnnealing(initialState, constraints, moveGenerators, config);In v2, you define:
- Your state structure (including time slots if needed)
- Your constraints (hard and soft)
- Your move operators
- Everything else specific to your domain
See the Migration Guide for detailed instructions.
License
MIT
Author
Emmanuel Alejandro Albert A Bayor
Contributing
Contributions welcome! Please open an issue or PR on GitHub.
