npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

tiny-graph-db

v1.0.4

Published

A tiny, no-external-dependency, disk-based graph database for Node.js with rich set of operations.

Downloads

4

Readme

TinyGraphDB

A tiny, no-external-dependencies, disk-based graph database for Node.js with rich query, traversal, batch ops, batch cosine similarity, and semantic filtering.

  • Persist node-&-relation graphs in a JSON file
  • Query, traverse, mutate, and semantically search graphs in JavaScript
  • Cosine similarity search of nodes & edges via vector embeddings for AI/semantic-graph use cases
  • Batch and hierarchical traversals, semantic+traditional queries, and stats
  • Full API for CRUD, batch, similarity, statistics, import/export, and traversal

Table of Contents

Features

  • Persistent storage
    All nodes & edges auto-saved to a JSON file
  • 🔍 Search: name, metadata, ID, relation endpoints, and semantic/meta comparison
  • 🧮 Cosine Similarity queries for embeddings in metadata (nodes or relations)
  • 🔄 Graph Traversal, walk/batch from node, relation, or metadata; supports direction/depth/name filters
  • ⬇️ Batch update/delete by search criteria (see below)
  • 📈 Stats: node count, edge count, average degree
  • 🔄 Import/export: snapshot/restore full graph
  • ⚡ Fast, super lightweight, perfect for graph semantic search, retrieval-augmented generation, etc.

Installation

npm install tiny-graph-db

Quick Start

const TinyGraphDB = require('tiny-graph-db');
const db = new TinyGraphDB();

// Add nodes with embeddings
const nodeA = db.addNode('Paper A', { type: 'paper', embedding: [0.2, 0.1, 0.5] });
const nodeC = db.addNode('Concept X', { type: 'concept', embedding: [0.25, 0.1, 0.55] });
const nodeP = db.addNode('Author', { type: 'person', embedding: [0.9, 0.8, 0.7] });

const rel1 = db.addRelation('mentions', nodeA.id, nodeC.id, { confidence: 0.92 });
const rel2 = db.addRelation('authored_by', nodeA.id, nodeP.id, { confidence: 1.0 });

// Node search by metadata
console.log('All concepts:', db.searchNodes({ metadata: { type: 'concept' } }));

// Cosine similarity search
const qv = [0.2, 0.1, 0.52];
const similar = db.searchNodesByCosineSimilarity(qv, { threshold: 0.99 });
console.log('Semantically closest nodes:', similar);

// Traverse outgoing links from nodeA up to depth 2
const walk = db.traverseFromNode(nodeA.id, { maxDepth: 2, directions: ['outgoing'] });
console.log('Traversal:', walk);

// Batch update: update all "concept" nodes
db.updateBySearch('node', { metadata: { type: 'concept' } }, { metadata: { reviewed: true } });

// Batch delete: remove all relations with low confidence
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.95 } } });

// Save (usually auto, but explicit call)
db.flushToDisk();

API

Constructor

new TinyGraphDB(filePath?: string)
  • filePath: Path to JSON file (default: './graph_data.json').

Node Operations

| Method | Description | Returns | |---------------------------------------------------------------|--------------------------------------------------------|-----------------------| | addNode(name, metadata = {}, flush = true) | Create node with name/metadata | Node object | | getNode(nodeId) | Look up node by ID | Node or undefined | | getAllNodes() | Get all nodes | Node[] | | updateNode(nodeId, {name?, metadata?}) | Update name/metadata | Updated node | | deleteNode(nodeId) | Remove node and all its relations | Deleted node object | | deleteBySearch('node', conditions) | Batch delete by search | Array of removed |

Relation Operations

| Method | Description | Returns | |---------------------------------------------------------------|--------------------------------------------------------|---------------------------| | addRelation(name, fromNodeId, toNodeId, metadata = {}, flush = true) | Create edge between nodes | Relation object | | getRelation(relationId) | Fetch edge by ID | Relation or undefined | | getAllRelations() | Get all edges | Relation[] | | updateRelation(relationId, {name?, metadata?}) | Update name/metadata | Updated relation | | deleteRelation(relationId) | Remove relation | Deleted relation object | | deleteBySearch('relation', conditions) | Batch delete by search | Array of removed |

Query & Search

searchNodes(conditions: SearchConditions): Node[]
searchRelations(conditions: SearchConditions): Relation[]

conditions:

  • name: string | RegExp | { contains: string }
  • id, fromNodeId, toNodeId
  • metadata: { [key]: ... } supports:
    • equality, comparison: { eq, ne, gt, gte, lt, lte, contains, startsWith, endsWith, in }
    • cosine similarity: { cosineSimilarity: { queryEmbedding, threshold } }
  • cosineSimilarity (top-level): { queryEmbedding, embeddingKey, threshold }

Cosine Similarity Search

searchNodesByCosineSimilarity(queryEmbedding: number[], options?): Array
searchRelationsByCosineSimilarity(queryEmbedding: number[], options?): Array
cosineSimilarity(vecA: number[], vecB: number[]): number
  • queryEmbedding: Numeric vector
  • Options:
    • embeddingKey: metadata key for vector (default: 'embedding')
    • threshold: similarity threshold (default: 0.5)
    • limit: max results (default: 10)

Example

db.searchNodesByCosineSimilarity([0.1, 0.2, 0.3], { threshold: 0.8, limit: 3 });

Graph Traversal

| Method | Description | Returns | |----------------------------------------------------|----------------------------------------------|-----------------------------------| | traverseFromNode(startNodeId, options) | Walks from a node, following edges (see below) | Array of [fromNode, relation, toNode] | | traverseFromRelation(startRelationId, maxDepth?) | Starts traversal from a relation | Same as above | | traverseFromMetadata(metadataConditions, maxDepth?) | Begins traverse from nodes/relations that match metadata | Same as above |

Options for traverseFromNode:

  • maxDepth: limit depth (Infinity by default)
  • directions: ['outgoing','incoming']
  • relationName: (optional) filter by relation name

Example

db.traverseFromNode(nodeId, { maxDepth: 2, directions: ['outgoing'] });

Result: Array of [fromNode, relation, toNode] triplets in visit order.

Batch Update / Delete

Update by search

updateBySearch('node' | 'relation', searchConditions, { name?, metadata? }): Array
// Example:
db.updateBySearch('node', { metadata: { genre: 'sci-fi' } }, { name: 'SF Novel' });

Delete by search

deleteBySearch('node' | 'relation', searchConditions): Array
// Example:
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.9 } } });

GraphRAG & Hierarchical Traversal

Hybrid search and traversal for retrieval-augmented-graph (RAG) and LLM flows

searchAndTraverse(queryEmbedding, options?): Array

Supports:

  • Cosine similarity search + regular filters, for nodes/relations
  • For each initial match, traverses up to N hops, directionally (optionally, end traversal on node only)
  • Returns rich hierarchical JSON

Options:

  • embeddingKey, threshold, limit - see cosine similarity
  • hops: Number of hops to traverse (default: 3)
  • nodeFilters, relationFilters: Additional filters
  • searchNodes, searchRelations: Whether to include nodes, edges, or both
  • directions: e.g., ['outgoing', 'incoming']
  • endOnNode: bool (whether to always finish traversal on nodes)

Example:

const tree = db.searchAndTraverse([0.2, 0.1, 0.5], {
  hops: 2,
  searchNodes: true,
  searchRelations: false,
  nodeFilters: { metadata: { type: 'paper' } },
});
console.log(tree);
// Output: array of hierarchical trees, each rooted on an initial (semantic) hit, with outgoing/incoming relations, connected nodes/edges & so forth

Import / Export

exportData(): { nodes: Node[], relations: Relation[] }
importData(data: { nodes, relations }): void

Export produces the full graph dataset as JSON-serializable data. Import wipes and loads supplied graph, then persists.

Utility

  • getNeighbors(nodeId): All neighbor nodes, with edge and direction
    • Returns: Array of { node, relation, direction }
  • getStats(): { nodeCount, relationCount, avgDegree }
  • flushToDisk(): Explicit save to disk (auto after every mutation unless using flush = false param on add)
  • rebuildNodeRelationsIndex(): Internal; rebuilds edge indices (auto-run after import)

Examples

1. Traditional Search

const book1    = db.addNode('Dune',        { genre: 'sci-fi',   pages: 412, published: 1965 });
const book2    = db.addNode('Foundation',  { genre: 'sci-fi',   pages: 255, published: 1951 });
const author1  = db.addNode('Frank Herbert', { nationality: 'US' });

// Find all US authors:
db.searchNodes({ metadata: { nationality: 'US' } });

// Find all books published pre-1960:
db.searchNodes({ metadata: { published: { lt: 1960 } } });

2. Cosine Similarity Search

const doc = db.addNode('Graph Vector', { embedding: [0.2, 0.4, 0.6] });
// Find similar to [0.2, 0.41, 0.67]:
db.searchNodesByCosineSimilarity([0.2, 0.41, 0.67], { threshold: 0.95 });

3. Traversals

// Walk two hops out from a node
const walk = db.traverseFromNode(doc.id, { maxDepth: 2, directions: ['outgoing'] });

// Start traversal from a relation
const traverseRels = db.traverseFromRelation(rel1.id, 3);

// Traverse from all nodes with type "paper":
db.traverseFromMetadata({ type: 'paper' }, 2);

4. Batch Update & Delete

// Tag all "concept" nodes as reviewed
db.updateBySearch('node', { metadata: { type: 'concept' } }, { metadata: { reviewed: true } });
// Delete all weak relations
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.8 } } });

5. Hybrid "search and traverse" (GraphRAG pattern)

// Retrieve node (by semantic match) then its 2-hop subgraph
const rag = db.searchAndTraverse([0.25, 0.1, 0.5], { hops: 2 });
console.log(JSON.stringify(rag, null, 2));

6. Utilities

console.log('Stats:', db.getStats());
console.log('Neighbors of nodeA:', db.getNeighbors(nodeA.id));
// Export/import
const json = db.exportData();
db.importData(json);

Performance Benchmarks

| Function | Time (ms) | Ops/sec | |----------------------------------|-----------|------------| | getNode() | 0.0001 | 8,473,743 | | traverseFromNode() | 0.0072 | 138,175 | | searchNodes() | 0.1728 | 5,787 | | searchNodesByCosineSimilarity() | 0.3456 | 2,893 |

Run benchmarks: node src/benchmark.js 1000 2000 5 or npm run benchmark -- 1000 2000 5

Contributing

  1. Fork the repo
  2. Create a branch: git checkout -b feat/my-feature
  3. Commit & push, then open a PR

Please file bugs/requests using GitHub Issues.

License

MIT License (see LICENSE)

Built with ♥ by freakynit