npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

transcript-monitor-agent

v1.2.0

Published

Simple transcript monitoring and intelligent response generation

Readme

transcript-monitor-agent

A comprehensive TypeScript library for real-time transcript monitoring and intelligent AI response generation.

npm version License: MIT TypeScript

Overview

Transcript-monitor-agent is a powerful, event-driven library that provides seamless transcript monitoring coupled with intelligent response generation. It's designed to simplify real-time communication processes, making it an indispensable tool for building responsive AI assistants, chatbots, and interactive voice applications.

Key Features

  • 🎯 Real-time transcript monitoring with configurable debouncing
  • 🤖 Multi-provider AI support (OpenAI, Anthropic, custom implementations)
  • 📊 Intelligent response timing based on context analysis
  • 🔧 Highly configurable with extensive customization options
  • 💾 Flexible storage backends (memory, localStorage, custom)
  • 📝 Event-driven architecture for seamless integration
  • 🎭 Role-based responses with contextual awareness
  • 📚 Conversation history management with automatic cleanup
  • TypeScript-first with comprehensive type definitions

Recent Updates (v1.1.1)

  • ✨ Added named addressing support for direct monitor interaction
  • 🎭 Introduced role-based analysis and response generation
  • 📄 Added context file support for enhanced situational awareness
  • 🔄 Improved retry mechanisms with exponential backoff
  • 🚀 Performance optimizations and memory management improvements
  • 📚 Enhanced TypeScript definitions and JSDoc documentation

Quick Start

Installation

npm install transcript-monitor-agent

Basic Usage

import { TranscriptMonitor, SimpleStorage } from 'transcript-monitor-agent';

// Initialize with OpenAI
const monitor = new TranscriptMonitor({
  storage: new SimpleStorage(),
  
  analyzer: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    minWords: 5,
    maxSilenceMs: 1500
  },
  
  generator: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    model: 'gpt-4o',
    systemPrompt: 'You are a helpful assistant. Be concise and friendly.',
    temperature: 0.7
  },
  
  debounceMs: 1000
});

// Event listeners
monitor.on('transcriptChanged', (transcript: string) => {
  console.log('📝 New transcript:', transcript);
});

monitor.on('analysisComplete', (result) => {
  console.log('🔍 Analysis result:', result);
});

monitor.on('responseGenerated', (response: string) => {
  console.log('🤖 AI Response:', response);
});

monitor.on('error', (error: Error) => {
  console.error('❌ Error:', error);
});

// Start monitoring
await monitor.start();

// Send transcript updates
monitor.updateTranscript('Hello, how can you help me today?');

Core API Reference

TranscriptMonitor

The main orchestrator class that manages transcript monitoring and response generation.

Constructor

new TranscriptMonitor(config?: MonitorConfig)

MonitorConfig Interface:

interface MonitorConfig {
  storage?: StorageInterface;           // Custom storage implementation
  analyzer?: AnalyzerConfig;           // Analysis configuration
  generator?: GeneratorConfig;         // Response generation configuration
  debounceMs?: number;                // Debounce delay (default: 1000ms)
  pollingIntervalMs?: number;         // Polling interval (default: 500ms)
  maxPollingIntervalMs?: number;      // Max polling interval (default: 5000ms)
  name?: string;                      // Monitor name for direct addressing
  role?: string;                      // Role description for contextual behavior
  contextFile?: string;               // Path to context file or direct content
}

Methods

start(transcriptKey?: string): Promise<void>

Starts monitoring for transcript changes.

await monitor.start('transcript'); // Custom key
await monitor.start();              // Uses default 'transcript' key
stop(): void

Stops monitoring and cleans up resources.

monitor.stop();
updateTranscript(transcript: string): Promise<void>

Manually updates the transcript content.

await monitor.updateTranscript('User said something new...');
getHistory(): Message[]

Returns the current conversation history.

const history = monitor.getHistory();
console.log('Conversation history:', history);
clearHistory(): void

Clears the conversation history.

monitor.clearHistory();

Events

transcriptChanged

Emitted when a new transcript is received.

monitor.on('transcriptChanged', (transcript: string) => {
  // Handle new transcript
});
analysisComplete

Emitted when transcript analysis is completed.

monitor.on('analysisComplete', (result: AnalysisResult) => {
  // Handle analysis result
});
responseGenerated

Emitted when an AI response is generated.

monitor.on('responseGenerated', (response: string) => {
  // Handle generated response
});
error

Emitted when an error occurs.

monitor.on('error', (error: Error) => {
  // Handle error
});
started

Emitted when monitoring starts.

monitor.on('started', () => {
  console.log('Monitoring started');
});

TranscriptAnalyzer

Analyzes transcript content to determine when responses are needed.

Constructor

new TranscriptAnalyzer(config?: AnalyzerConfig)

AnalyzerConfig Interface:

interface AnalyzerConfig {
  provider?: 'openai' | 'anthropic' | 'custom';
  apiKey?: string;                    // API key for AI providers
  model?: string;                     // Model name (optional)
  minWords?: number;                  // Minimum words before analysis (default: 5)
  maxSilenceMs?: number;             // Maximum silence duration (default: 1500ms)
  customAnalyzer?: (transcript: string, context: AnalysisContext) => Promise<AnalysisResult>;
}

Methods

analyze(transcript: string, context: AnalysisContext): Promise<AnalysisResult>

Analyzes transcript content and context to determine response necessity.

const result = await analyzer.analyze('Hello there!', {
  transcript: 'Hello there!',
  previousTranscript: '',
  silenceDuration: 2000,
  conversationHistory: [],
  name: 'Assistant',
  role: 'helpful assistant'
});

ResponseGenerator

Generates contextually appropriate AI responses.

Constructor

new ResponseGenerator(config?: GeneratorConfig)

GeneratorConfig Interface:

interface GeneratorConfig {
  provider?: 'openai' | 'anthropic' | 'custom';
  apiKey?: string;                    // API key for AI providers
  model?: string;                     // Model name
  systemPrompt?: string;              // System prompt for AI
  temperature?: number;               // Response creativity (0-1, default: 0.7)
  maxTokens?: number;                // Maximum response length (default: 150)
  customGenerator?: (transcript: string, history: Message[]) => Promise<string>;
}

Methods

generate(transcript: string, history: Message[], options?: GenerationOptions): Promise<string>

Generates an AI response based on transcript and conversation history.

const response = await generator.generate(
  'What is machine learning?',
  conversationHistory,
  {
    name: 'Assistant',
    role: 'teacher',
    contextFile: 'context.json'
  }
);

Storage Classes

SimpleStorage

In-memory storage with subscription support.

const storage = new SimpleStorage();
await storage.set('key', 'value');
const value = await storage.get('key');

// Subscribe to changes
const unsubscribe = storage.subscribe('key', (value) => {
  console.log('Value changed:', value);
});

BrowserStorage

Browser localStorage/sessionStorage adapter.

const storage = new BrowserStorage(localStorage);
// Or use sessionStorage
const sessionStorage = new BrowserStorage(window.sessionStorage);

Type Definitions

AnalysisResult

interface AnalysisResult {
  shouldRespond: boolean;    // Whether to generate a response
  confidence: number;        // Confidence level (0-1)
  reason: string;           // Human-readable reasoning
}

AnalysisContext

interface AnalysisContext {
  transcript: string;              // Current transcript
  previousTranscript: string;      // Previous transcript
  silenceDuration: number;         // Duration of silence in ms
  conversationHistory: Message[];  // Conversation history
  name?: string;                   // Monitor name
  role?: string;                   // Monitor role
  contextFile?: string;            // Context file path/content
}

Message

interface Message {
  role: 'user' | 'assistant';    // Message sender
  content: string;               // Message content
  timestamp: number;             // Unix timestamp
}

Advanced Usage Examples

Named Assistant with Role

const monitor = new TranscriptMonitor({
  name: 'Julia',
  role: 'patient math tutor for high school students',
  
  analyzer: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    minWords: 3,
    maxSilenceMs: 2000
  },
  
  generator: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    model: 'gpt-4o',
    systemPrompt: 'You are Julia, a patient math tutor. Explain concepts step by step.',
    temperature: 0.6
  }
});

// The monitor will respond more readily when addressed as "Julia"
monitor.updateTranscript('Julia, can you help me with calculus?');

Custom Analysis Logic

const monitor = new TranscriptMonitor({
  analyzer: {
    customAnalyzer: async (transcript, context) => {
      // Custom decision logic
      const hasUrgentKeyword = /urgent|emergency|help|problem/i.test(transcript);
      const isQuestion = transcript.includes('?');
      const isAddressed = context.name && 
        transcript.toLowerCase().includes(context.name.toLowerCase());
      
      if (hasUrgentKeyword || isAddressed) {
        return {
          shouldRespond: true,
          confidence: 0.95,
          reason: hasUrgentKeyword ? 'Urgent keyword detected' : 'Directly addressed'
        };
      }
      
      if (isQuestion && context.silenceDuration > 1000) {
        return {
          shouldRespond: true,
          confidence: 0.8,
          reason: 'Question with adequate pause'
        };
      }
      
      return {
        shouldRespond: false,
        confidence: 0.3,
        reason: 'Waiting for more input'
      };
    }
  },
  
  generator: {
    provider: 'anthropic',
    apiKey: process.env.ANTHROPIC_API_KEY,
    model: 'claude-3-sonnet-20240229',
    systemPrompt: 'You are a helpful assistant. Respond appropriately to user needs.'
  }
});

Integration with Deepgram

import { TranscriptMonitor, BrowserStorage } from 'transcript-monitor-agent';
// Uncomment when Deepgram is installed
// import { Deepgram } from '@deepgram/sdk';

const monitor = new TranscriptMonitor({
  storage: new BrowserStorage(),
  
  analyzer: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    minWords: 3
  },
  
  generator: {
    provider: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    model: 'gpt-4o',
    systemPrompt: 'You are a voice assistant. Be conversational and helpful.'
  }
});

monitor.on('responseGenerated', (response) => {
  // Send to text-to-speech, display in UI, etc.
  console.log('🤖 AI Response:', response);
});

await monitor.start();

// Integrate with Deepgram
/*
const deepgram = new Deepgram(process.env.DEEPGRAM_API_KEY);
const live = deepgram.transcription.live({
  punctuate: true,
  interim_results: true
});

live.on('transcript', (data) => {
  if (data.transcript) {
    monitor.updateTranscript(data.transcript);
  }
});
*/

Web Speech API Integration

// Browser environment
if ('webkitSpeechRecognition' in window) {
  const recognition = new webkitSpeechRecognition();
  recognition.continuous = true;
  recognition.interimResults = true;
  
  recognition.onresult = (event) => {
    const transcript = event.results[event.results.length - 1][0].transcript;
    monitor.updateTranscript(transcript);
  };
  
  recognition.start();
}

Custom Storage Implementation

import { StorageInterface } from 'transcript-monitor-agent';

class DatabaseStorage implements StorageInterface {
  async get(key: string): Promise<string> {
    // Fetch from database
    const result = await db.query('SELECT value FROM storage WHERE key = ?', [key]);
    return result[0]?.value || '';
  }
  
  async set(key: string, value: string): Promise<void> {
    // Save to database
    await db.query('INSERT OR REPLACE INTO storage (key, value) VALUES (?, ?)', [key, value]);
    
    // Notify subscribers via your preferred method (WebSockets, etc.)
    this.notifySubscribers(key, value);
  }
  
  subscribe(key: string, callback: (value: string) => void): () => void {
    // Implement subscription logic
    this.subscribers.set(key, callback);
    return () => this.subscribers.delete(key);
  }
}

const monitor = new TranscriptMonitor({
  storage: new DatabaseStorage()
});

Configuration Best Practices

Model Selection

  • GPT-4o: Best for complex analysis and nuanced responses
  • GPT-4o-mini: Good balance of speed and capability
  • Claude-3-Sonnet: Excellent for conversational responses
  • Claude-3-Haiku: Fast responses for simple interactions

Performance Tuning

const monitor = new TranscriptMonitor({
  // Adjust debouncing for your use case
  debounceMs: 500,          // Faster response (default: 1000)
  
  // Polling configuration
  pollingIntervalMs: 250,   // Check more frequently (default: 500)
  maxPollingIntervalMs: 2000, // Cap at 2s (default: 5000)
  
  analyzer: {
    minWords: 3,            // Lower threshold for quicker responses
    maxSilenceMs: 1000     // Shorter silence tolerance
  },
  
  generator: {
    temperature: 0.3,       // More consistent responses
    maxTokens: 100         // Shorter responses for speed
  }
});

Error Handling

The library includes built-in retry mechanisms and graceful error handling:

monitor.on('error', (error) => {
  if (error.message.includes('API')) {
    console.error('API Error - check your credentials');
  } else if (error.message.includes('rate limit')) {
    console.error('Rate limited - implementing backoff');
  } else {
    console.error('Unexpected error:', error);
  }
});

Migration Guide

From v1.0.x to v1.1.x

  • ✅ No breaking changes
  • ✨ New optional parameters: name, role, contextFile
  • 🔄 Enhanced AnalysisContext interface
  • 📚 Improved TypeScript definitions

Contributing

We welcome contributions! Please see our Contributing Guide for details.

License

MIT License - see LICENSE file for details.

Support