npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

turbocsv

v0.2.0

Published

High-performance CSV parser with SIMD acceleration, DataFrame operations, and CLI

Downloads

194

Readme

TurboCSV

High-performance CSV parser with SIMD acceleration, DataFrame operations, and CLI.

Built with Zig for native performance and Bun FFI for seamless JavaScript integration.

Features

  • SIMD-Accelerated Parsing - Uses ARM64 NEON/x86 SSE2 vector instructions for parallel character scanning
  • RFC 4180 Compliant - Full support for quoted fields, escaped quotes, and multi-line values
  • Memory-Mapped Files - Efficient handling of large files without loading everything into memory
  • DataFrame API - Pandas-like operations: select, filter, sort, groupBy, join
  • Copy-on-Write Modifications - Edit CSV data in-place with lazy writes
  • Full-Featured CLI - 11 commands for data exploration and transformation
  • Cross-Platform - Native binaries for macOS, Linux, Windows + WASM fallback

Installation

bun add turbocsv
# or
npm install turbocsv

The package automatically downloads platform-specific native binaries. Falls back to WASM on unsupported platforms.

Quick Start

TypeScript API

import { CSVParser, DataFrame } from "turbocsv";

// Basic parsing
const parser = new CSVParser("data.csv");

for (const row of parser) {
  console.log(row.get("name"), row.get("email"));
}

parser.close();

CLI

# Count rows
turbocsv count data.csv

# Preview data
turbocsv head -n 10 data.csv
turbocsv tail -n 5 --format table data.csv

# Filter and transform
turbocsv filter "age > 21" data.csv
turbocsv sort -c name --order asc data.csv
turbocsv select "name,email,phone" data.csv

# Convert formats
turbocsv convert --to json data.csv -o data.json

# Performance testing
turbocsv benchmark data.csv

API Reference

CSVParser

import { CSVParser } from "turbocsv";

// Basic usage
const parser = new CSVParser("file.csv");

// With options
const parser = new CSVParser("file.csv", {
  delimiter: ",",        // Field delimiter (default: auto-detect)
  hasHeader: true,       // First row is header (default: true)
  quote: '"',            // Quote character (default: ")
  escape: '"',           // Escape character (default: ")
  skipRows: 0,           // Skip N rows at start
  maxRows: 1000,         // Limit rows parsed
  writable: false,       // Enable copy-on-write modifications
});

// Iterate rows
for (const row of parser) {
  row.get(0);            // By index
  row.get("column");     // By name
  row.toArray();         // As string[]
  row.toObject();        // As Record<string, string>
}

// Get headers
const headers = parser.getHeaders(); // string[] | null

// Convert to DataFrame
const df = parser.toDataFrame();

// Always close when done
parser.close();

Copy-on-Write Modifications

const parser = new CSVParser("file.csv", { writable: true });

// Modify cells
parser.setCell(0, "name", "New Name");
parser.setCell(5, 2, "Updated Value");

// Insert/delete rows
parser.insertRow(10, ["col1", "col2", "col3"]);
parser.deleteRow(3);

// Save changes to new file
parser.save("modified.csv");

// Or discard changes
parser.discardChanges();

parser.close();

DataFrame

import { CSVParser, DataFrame } from "turbocsv";

const parser = new CSVParser("data.csv");
const df = parser.toDataFrame();

// Chain operations
const result = df
  .filter(row => row.age > 18)
  .select("name", "email", "age")
  .sorted("name", "asc")
  .first(100);

// Aggregation
const grouped = df.groupBy("department", [
  { col: "salary", fn: "mean" },
  { col: "id", fn: "count" },
]);

// Joins
const joined = df1.join(df2, {
  on: "user_id",
  type: "inner", // inner, left, right, full, cross
});

// Available aggregate functions
// count, sum, min, max, mean, median, stddev, first, last, concat

CSVWriter

import { CSVWriter } from "turbocsv";

const writer = new CSVWriter("output.csv", {
  delimiter: ",",
  quote: '"',
  lineEnding: "\n",
  includeHeader: true,
});

// Write header
writer.writeHeader(["name", "email", "age"]);

// Write rows
writer.writeRow(["Alice", "[email protected]", "30"]);
writer.writeRows([
  ["Bob", "[email protected]", "25"],
  ["Charlie", "[email protected]", "35"],
]);

writer.close();

CLI Commands

| Command | Description | |---------|-------------| | count | Count rows in CSV file | | head | Show first N rows | | tail | Show last N rows | | select | Select specific columns | | filter | Filter rows by expression | | sort | Sort by column | | stats | Show column statistics | | validate | Validate CSV format (RFC 4180) | | convert | Convert to JSON, TSV, JSONL | | benchmark | Measure parsing performance | | completions | Generate shell completions |

Filter Expressions

# Comparison operators
turbocsv filter "age > 21" data.csv
turbocsv filter "status == active" data.csv
turbocsv filter "price <= 100" data.csv

# String operations
turbocsv filter "name contains John" data.csv
turbocsv filter "email startswith admin" data.csv
turbocsv filter "domain endswith .com" data.csv

# Pattern matching
turbocsv filter "phone matches ^\\+1" data.csv

Output Formats

# Table (default for head/tail)
turbocsv head --format table data.csv

# CSV
turbocsv head --format csv data.csv

# JSON array
turbocsv head --format json data.csv

# JSON Lines (one object per line)
turbocsv head --format jsonl data.csv

Shell Completions

# Bash
turbocsv completions bash >> ~/.bashrc

# Zsh
turbocsv completions zsh >> ~/.zshrc

# Fish
turbocsv completions fish > ~/.config/fish/completions/turbocsv.fish

Configuration

Create a .turbocsvrc file in your project or home directory:

{
  "delimiter": ",",
  "quote": "\"",
  "hasHeader": true,
  "format": "table",
  "maxRows": 1000
}

Performance

Benchmark Comparison

TurboCSV vs popular CSV libraries (Apple M1 Pro):

| File | TurboCSV | PapaParse | csv-parse | fast-csv | |------|----------|-----------|-----------|----------| | 1K rows (98 KB) | 122.6 MB/s | 84.0 MB/s | 25.2 MB/s | 24.8 MB/s | | 10K rows (1 MB) | 165.3 MB/s | 109.3 MB/s | 34.9 MB/s | 28.7 MB/s | | 100K rows (10 MB) | 176.1 MB/s | 112.0 MB/s | 35.3 MB/s | 30.2 MB/s | | 100K rows (16.5 MB) | 269.3 MB/s | 224.6 MB/s | 40.3 MB/s | 38.1 MB/s |

Average speedup:

  • 1.65x faster than PapaParse
  • 6.35x faster than csv-parse
  • 5.71x faster than fast-csv

Run the benchmark yourself:

bun run benchmark:compare

Why TurboCSV is Fast

  • SIMD acceleration - ARM64 NEON/x86 SSE2 vector instructions for parallel character scanning
  • Native Zig code - Zero-overhead FFI bindings via Bun
  • Memory-mapped files - No copying data into JavaScript heap
  • Streaming architecture - Process files larger than available RAM

Building from Source

Prerequisites

Build Commands

# Install dependencies
bun install

# Build native library
bun run build:zig

# Build TypeScript
bun run build:ts

# Build CLI
bun run build:cli

# Build everything (native + TS + CLI)
bun run build

# Build WASM fallback
bun run build:wasm

# Build all targets
bun run build:all

# Run tests
bun test

# Run benchmarks
bun run benchmark

Project Structure

turbocsv/
├── src/
│   ├── zig/           # Zig SIMD parser
│   │   ├── parser.zig     # Main CSV parser
│   │   ├── simd.zig       # SIMD vectorized scanning
│   │   ├── mmap.zig       # Cross-platform memory mapping
│   │   ├── iconv.zig      # Character encoding support
│   │   └── dataframe.zig  # DataFrame operations
│   ├── ts/            # TypeScript bindings
│   │   ├── parser.ts
│   │   ├── dataframe.ts
│   │   ├── writer.ts
│   │   ├── ffi.ts
│   │   └── wasm-ffi.ts
│   └── cli/           # CLI application
│       ├── index.ts
│       └── commands/
├── test/              # Test files
├── wasm/              # WASM output
└── binaries/          # Native binaries (downloaded)

License

MIT

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request