utcp-mcp-gateway
v0.1.24
Published
UTCP Gateway - Universal MCP proxy with LLM-powered response filtering
Maintainers
Readme
utcp-mcp-gateway
The Story / 故事
I noticed Claude Skills works amazingly well — Claude dynamically discovers and loads only the skills it needs, avoiding context overload.
But most agent frameworks? They dump 500+ tool definitions into the context at once. And MCP responses? Often 10,000+ chars of raw data that waste your tokens.
Then I discovered UTCP — exactly what I needed! Progressive tool discovery built-in. And Cloudflare's Code Mode? One code block executes everything. Brilliant!
So I built on top of UTCP: Progressive Discovery + Code Mode + LLM Filtering — the smarter way to use MCP.
The best part? Just add one config block. Works with Claude Desktop, Windsurf, Cursor, Dify, and any MCP-compatible client. No extra servers needed.
Looking for...?
- ✅ Claude Skills alternative for your MCP setup
- ✅ Better MCP tool management without context overload
- ✅ Progressive tool discovery — load tools on demand
- ✅ MCP token optimization — reduce 90%+ token waste
- ✅ MCP response filtering — smart summarization
You're in the right place.
What is this?
LLMs are great at writing code, but terrible at tool calling.
Traditional MCP exposes tools directly to LLMs — but LLMs struggle with:
- Too many tools (500+ definitions = confusion)
- Huge responses (10,000+ chars = wasted tokens)
- Multiple round trips (15+ API calls = slow & expensive)
utcp-mcp-gateway fixes all of this:
| Problem | Solution | |---------|----------| | 500+ tool definitions | Progressive Discovery — load only what's needed | | 10,000+ char responses | LLM Filtering — smart summarization (97% smaller!) | | 15+ API round trips | Code Mode — one code block, one execution |
Traditional: User → LLM → Tool1 → LLM → Tool2 → LLM → Tool3 → Result
(15+ calls, $26/day, slow)
Code Mode: User → LLM writes code → Execute all at once → Result
(1 call, $0.87/day, fast)Result: $9,536/year savings (benchmark source)
Features
| Feature | Description |
|---------|-------------|
| 🔌 Universal MCP | Connect any HTTP or stdio MCP server |
| 🧠 LLM Filtering | Intelligent summarization (97% response reduction!) |
| 🔍 Progressive Discovery | search_tools - find tools without loading all 500 definitions |
| ⚡ Code Mode | Execute TypeScript tool chains in one call |
| 🔒 Secure Sandbox | Code runs in isolated environment |
| 📦 Zero Config | Environment variables only, no config files |
Quick Start
Zero config files needed! Just add to Claude Desktop config:
Mode 1: HTTP MCP (Remote)
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_URL": "https://mcp.context7.com/mcp",
"MCP_NAME": "context7",
"LLM_API_KEY": "sk-xxx",
"LLM_BASE_URL": "https://api.openai.com/v1",
"LLM_MODEL": "gpt-4o-mini"
}
}
}
}Mode 2: stdio MCP (Local)
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_COMMAND": "npx",
"MCP_ARGS": "-y,@anthropic/mcp-server-filesystem",
"MCP_NAME": "filesystem",
"MCP_TRANSPORT": "stdio",
"LLM_API_KEY": "sk-xxx"
}
}
}
}⚠️ Windows Users: Use
cmd /c npxinstead ofnpx:"command": "cmd", "args": ["/c", "npx", "-y", "utcp-mcp-gateway"]
Environment Variables
| Variable | Required | Description |
|----------|----------|-------------|
| MCP_URL | HTTP mode | MCP server URL |
| MCP_COMMAND | stdio mode | Command to run MCP |
| MCP_ARGS | stdio mode | Arguments (comma-separated) |
| MCP_NAME | ✅ | MCP namespace |
| MCP_TRANSPORT | No | http (default) or stdio |
| LLM_API_KEY | For filtering | Any OpenAI-compatible API key |
| LLM_BASE_URL | For filtering | API endpoint (default: OpenAI) |
| LLM_MODEL | For filtering | Model name (default: gpt-4o-mini) |
That's it! Restart Claude Desktop and try: "Search for React useState examples"
How It Works
┌──────────────┐ ┌─────────────────────────────────┐ ┌─────────────┐
│ Your AI │────▶│ utcp-mcp-gateway │────▶│ Any MCP │
│ (Claude etc) │ │ ┌─────────┐ ┌─────────────┐ │ │ (Context7) │
└──────────────┘ │ │ UTCP │ │ LLM Filter │ │ └─────────────┘
│ │ search │ │ 10K→300char │ │
│ └─────────┘ └─────────────┘ │
└─────────────────────────────────┘Gateway exposes 4 tools to your AI:
| Tool | Parameters | What it does |
|------|------------|--------------|
| search_tools | query, limit | Find tools by keyword. Returns tools with TypeScript interfaces |
| list_tools | - | List all registered tools from connected MCPs |
| tool_info | tool_name | Get detailed TypeScript interface for a specific tool |
| call_tool_chain | code, timeout, max_output_size, filter_response, purpose | Execute TypeScript code that calls multiple tools in one shot |
Context-Aware Summarization
When using call_tool_chain with filter_response: true, you can provide a purpose parameter to guide the LLM summarization:
call_tool_chain({
code: "const docs = await context7.context7_get_library_docs({...}); return docs;",
filter_response: true,
purpose: "Find React useState usage examples"
})The LLM will extract only information relevant to your purpose, instead of generic summarization.
Example Flow
User: "How do I use React useState?"
1. AI calls search_tools("react") → Returns tools with TypeScript interfaces
2. AI calls call_tool_chain with code:
const id = await context7.context7_resolve_library_id({ libraryName: "react" });
const docs = await context7.context7_get_library_docs({ libraryId: id, topic: "useState" });
return docs;
3. Gateway executes code and returns result
4. AI receives structured responseToken Savings Benchmarks
| MCP Service | Original | Filtered | Savings | |-------------|----------|----------|---------| | Context7 (docs) | 10,625 chars | 326 chars | 97% | | DeepWiki (wiki) | 3,318 chars | 400 chars | 88% |
Configuration
Single MCP
MCP_URL=https://mcp.context7.com/mcp
MCP_NAME=context7Multiple MCPs (Recommended: Numbered Style)
Use numbered environment variables for clear configuration:
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_1_NAME": "context7",
"MCP_1_URL": "https://mcp.context7.com/mcp",
"MCP_2_NAME": "filesystem",
"MCP_2_COMMAND": "npx",
"MCP_2_ARGS": "-y,@anthropic/mcp-server-filesystem,/path/to/dir",
"LLM_API_KEY": "sk-xxx",
"MAX_RESPONSE_CHARS": "10000"
}
}
}
}Numbered variables:
MCP_1_NAME,MCP_1_URL- First MCP (HTTP mode)MCP_2_NAME,MCP_2_COMMAND,MCP_2_ARGS- Second MCP (stdio mode)- Up to
MCP_20_*supported
Multiple MCPs (Alternative: Semicolon Style)
{
"env": {
"MCP_URL": "https://mcp.context7.com/mcp;https://mcp.deepwiki.com/mcp",
"MCP_NAME": "context7;deepwiki"
}
}LLM Settings
| Variable | Default | Description |
|----------|---------|-------------|
| LLM_API_KEY | - | OpenAI/OpenRouter API key |
| LLM_BASE_URL | OpenAI | Custom endpoint (OpenAI-compatible) |
| LLM_MODEL | gpt-4o-mini | Model for summarization |
| ENABLE_LLM_FILTER | true | Enable/disable filtering |
| MAX_RESPONSE_CHARS | 10000 | Max response length before LLM summarization |
| FORCE_LLM_FILTER | false | Force LLM summarization for all responses |
Smart Router Settings (v0.1.20+)
| Variable | Default | Description |
|----------|---------|-------------|
| ENABLE_LLM_SEARCH | true | Use LLM for intelligent tool search |
| ROUTER_MODEL | (uses LLM_MODEL) | Model for tool routing (recommend faster model) |
How it works:
list_toolsreturns brief summaries instead of full schemas (saves tokens)search_toolsuses LLM to understand intent and recommend relevant tools (uses full descriptions for accuracy)- Falls back to keyword search if LLM is unavailable
- Fuzzy matching for tool names in case LLM returns slightly different names
- Pre-truncates large responses (>200k chars) before LLM summarization
OpenAPI Settings (v0.1.24+)
Register REST APIs directly from OpenAPI/Swagger specs:
OPENAPI_1_NAME=petstore
OPENAPI_1_URL=https://petstore.swagger.io/v2/swagger.json
OPENAPI_2_NAME=my_api
OPENAPI_2_URL=https://api.example.com/openapi.json
OPENAPI_2_AUTH_TYPE=api-key
OPENAPI_2_AUTH_TOKEN=sk-xxx
OPENAPI_2_AUTH_VAR=Authorization
OPENAPI_2_AUTH_LOCATION=header| Variable | Required | Description |
|----------|----------|-------------|
| OPENAPI_N_NAME | ✅ | Tool source name |
| OPENAPI_N_URL | ✅ | OpenAPI spec URL |
| OPENAPI_N_AUTH_TYPE | ❌ | api-key, bearer, basic, or none |
| OPENAPI_N_AUTH_TOKEN | ❌ | Auth token/key |
| OPENAPI_N_AUTH_VAR | ❌ | Header name (default: Authorization) |
| OPENAPI_N_AUTH_LOCATION | ❌ | header, query, or cookie |
How it works:
- Downloads and parses OpenAPI 2.0/3.0 specifications
- Converts each operation to a UTCP tool
- Tool name = operationId from OpenAPI spec
- Tool description = summary or description from OpenAPI spec
- Supports API Key, Bearer, Basic, and OAuth2 authentication
故事
我发现 Claude Skills 效果惊人 — Claude 动态发现并只加载需要的技能,避免上下文过载。
但大多数 Agent 框架?一次性把 500+ 工具定义塞进上下文。而且 MCP 响应?经常是 10,000+ 字符的原始数据,白白浪费 Token。
然后我惊喜地发现了 UTCP — 正是我需要的!内置渐进式工具发现。还有 Cloudflare 的 Code Mode?一段代码执行全部。太妙了!
于是我在 UTCP 基础上做了这个:渐进式发现 + Code Mode + LLM 过滤 — 更聪明的 MCP 使用方式。
最棒的是?只需加一段配置。兼容 Claude Desktop、Windsurf、Cursor、Dify 等所有 MCP 客户端。无需额外服务器。
你在找...?
- ✅ Claude Skills 替代方案 — 用于你的 MCP 配置
- ✅ 更好的 MCP 工具管理 — 无上下文过载
- ✅ 渐进式工具发现 — 按需加载工具
- ✅ MCP Token 优化 — 减少 90%+ Token 浪费
- ✅ MCP 响应过滤 — 智能摘要
你来对地方了。
这是什么?
LLM 擅长写代码,但不擅长调用工具。
传统 MCP 直接把工具暴露给 LLM — 但 LLM 面临:
- 工具太多(500+ 定义 = 困惑)
- 响应太大(10,000+ 字符 = 浪费 Token)
- 往返太多(15+ 次 API 调用 = 慢且贵)
utcp-mcp-gateway 一次解决所有问题:
| 问题 | 解决方案 | |------|----------| | 500+ 工具定义 | 渐进式发现 — 只加载需要的 | | 10,000+ 字符响应 | LLM 过滤 — 智能摘要(缩小 97%!)| | 15+ 次 API 往返 | Code Mode — 一段代码,一次执行 |
传统方式: 用户 → LLM → 工具1 → LLM → 工具2 → LLM → 工具3 → 结果
(15+ 次调用, $26/天, 慢)
Code Mode: 用户 → LLM 写代码 → 一次执行全部 → 结果
(1 次调用, $0.87/天, 快)结果:每年节省 $9,536 (基准测试来源)
核心功能
| 功能 | 说明 |
|------|------|
| 🔌 通用 MCP | 连接任意 HTTP 或 stdio MCP |
| 🧠 LLM 过滤 | 智能摘要(响应缩小 97%!)|
| 🔍 渐进式发现 | search_tools - 按需搜索,无需加载全部 500 个工具 |
| ⚡ Code Mode | 一次调用执行 TypeScript 代码链 |
| 🔒 安全沙箱 | 代码在隔离环境运行 |
| 📦 零配置 | 只需环境变量,无需配置文件 |
快速开始
零配置文件! 直接添加到 Claude Desktop 配置:
模式 1:HTTP MCP(远程)
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_URL": "https://mcp.context7.com/mcp",
"MCP_NAME": "context7",
"LLM_API_KEY": "sk-xxx",
"LLM_BASE_URL": "https://api.openai.com/v1",
"LLM_MODEL": "gpt-4o-mini"
}
}
}
}模式 2:stdio MCP(本地)
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_COMMAND": "npx",
"MCP_ARGS": "-y,@anthropic/mcp-server-filesystem",
"MCP_NAME": "filesystem",
"MCP_TRANSPORT": "stdio",
"LLM_API_KEY": "sk-xxx"
}
}
}
}⚠️ Windows 用户: 使用
cmd /c npx代替npx:"command": "cmd", "args": ["/c", "npx", "-y", "utcp-mcp-gateway"]
环境变量
| 变量 | 必填 | 说明 |
|------|------|------|
| MCP_URL | HTTP 模式 | MCP 服务器 URL |
| MCP_COMMAND | stdio 模式 | 运行 MCP 的命令 |
| MCP_ARGS | stdio 模式 | 参数(逗号分隔)|
| MCP_NAME | ✅ | MCP 命名空间 |
| MCP_TRANSPORT | 否 | http(默认)或 stdio |
| LLM_API_KEY | 过滤用 | 任意 OpenAI 兼容的 API Key |
| LLM_BASE_URL | 过滤用 | API 端点(默认 OpenAI)|
| LLM_MODEL | 过滤用 | 模型名称(默认 gpt-4o-mini)|
配置好后重启 Claude Desktop,试试:"搜索 React useState 用法"
工作原理
┌──────────────┐ ┌─────────────────────────────────┐ ┌─────────────┐
│ 你的 AI │────▶│ utcp-mcp-gateway │────▶│ 任意 MCP │
│ (Claude 等) │ │ ┌─────────┐ ┌─────────────┐ │ │ (Context7) │
└──────────────┘ │ │ UTCP │ │ LLM 过滤器 │ │ └─────────────┘
│ │ 搜索 │ │ 10K→300字符 │ │
│ └─────────┘ └─────────────┘ │
└─────────────────────────────────┘Gateway 向你的 AI 暴露 4 个工具:
| 工具 | 参数 | 作用 |
|------|------|------|
| search_tools | query, limit | 按关键词搜索工具,返回带 TypeScript 接口的工具列表 |
| list_tools | - | 列出所有已注册的工具 |
| tool_info | tool_name | 获取特定工具的详细 TypeScript 接口 |
| call_tool_chain | code, timeout, max_output_size, filter_response, purpose | 执行 TypeScript 代码,一次调用多个工具 |
上下文感知摘要
使用 call_tool_chain 时,设置 filter_response: true 并提供 purpose 参数,LLM 会根据你的目的智能提取相关信息:
call_tool_chain({
code: "const docs = await context7.context7_get_library_docs({...}); return docs;",
filter_response: true,
purpose: "查找 React useState 的用法示例"
})LLM 会只提取与你目的相关的信息,而不是泛泛的摘要。
调用流程示例
用户: "React useState 怎么用?"
1. AI 调用 search_tools("react") → 返回带 TypeScript 接口的工具
2. AI 调用 call_tool_chain 执行代码:
const id = await context7.context7_resolve_library_id({ libraryName: "react" });
const docs = await context7.context7_get_library_docs({ libraryId: id, topic: "useState" });
return docs;
3. Gateway 执行代码并返回结果
4. AI 收到结构化响应Token 节省实测
| MCP 服务 | 原始响应 | 过滤后 | 节省 | |----------|----------|--------|------| | Context7 | 10,625 字符 | 326 字符 | 97% | | DeepWiki | 3,318 字符 | 400 字符 | 88% |
配置说明
单个 MCP
MCP_URL=https://mcp.context7.com/mcp
MCP_NAME=context7多个 MCP(推荐:编号方式)
使用编号环境变量进行清晰配置:
{
"mcpServers": {
"gateway": {
"command": "npx",
"args": ["-y", "utcp-mcp-gateway"],
"env": {
"MCP_1_NAME": "context7",
"MCP_1_URL": "https://mcp.context7.com/mcp",
"MCP_2_NAME": "filesystem",
"MCP_2_COMMAND": "npx",
"MCP_2_ARGS": "-y,@anthropic/mcp-server-filesystem,/path/to/dir",
"LLM_API_KEY": "sk-xxx",
"MAX_RESPONSE_CHARS": "10000"
}
}
}
}编号变量:
MCP_1_NAME,MCP_1_URL- 第一个 MCP(HTTP 模式)MCP_2_NAME,MCP_2_COMMAND,MCP_2_ARGS- 第二个 MCP(stdio 模式)- 最多支持
MCP_20_*
多个 MCP(备选:分号方式)
{
"env": {
"MCP_URL": "https://mcp.context7.com/mcp;https://mcp.deepwiki.com/mcp",
"MCP_NAME": "context7;deepwiki"
}
}LLM 配置
| 变量 | 默认值 | 说明 |
|------|--------|------|
| LLM_API_KEY | - | OpenAI/OpenRouter API 密钥 |
| LLM_BASE_URL | OpenAI | 自定义端点(兼容 OpenAI 格式)|
| LLM_MODEL | gpt-4o-mini | 摘要用的模型 |
| ENABLE_LLM_FILTER | true | 开启/关闭过滤 |
| MAX_RESPONSE_CHARS | 10000 | 超过此长度时使用 LLM 摘要 |
| FORCE_LLM_FILTER | false | 强制所有响应都经过 LLM 摘要 |
智能路由配置 (v0.1.20+)
| 变量 | 默认值 | 说明 |
|------|--------|------|
| ENABLE_LLM_SEARCH | true | 使用 LLM 智能搜索工具 |
| ROUTER_MODEL | (复用 LLM_MODEL) | 路由用的模型(建议用更快的模型)|
工作原理:
list_tools返回精简摘要而非完整 schema(节省 token)search_tools使用 LLM 理解意图并推荐相关工具(使用全量描述确保准确性)- LLM 不可用时回退到关键词搜索
- 工具名模糊匹配,容错 LLM 返回格式不完全一致的情况
- 超大响应(>200k 字符)预截断后再进行 LLM 摘要
OpenAPI 配置 (v0.1.24+)
直接从 OpenAPI/Swagger 规范注册 REST API:
OPENAPI_1_NAME=petstore
OPENAPI_1_URL=https://petstore.swagger.io/v2/swagger.json
OPENAPI_2_NAME=my_api
OPENAPI_2_URL=https://api.example.com/openapi.json
OPENAPI_2_AUTH_TYPE=api-key
OPENAPI_2_AUTH_TOKEN=sk-xxx
OPENAPI_2_AUTH_VAR=Authorization
OPENAPI_2_AUTH_LOCATION=header| 变量 | 必填 | 说明 |
|------|------|------|
| OPENAPI_N_NAME | ✅ | 工具源名称 |
| OPENAPI_N_URL | ✅ | OpenAPI 规范地址 |
| OPENAPI_N_AUTH_TYPE | ❌ | api-key、bearer、basic 或 none |
| OPENAPI_N_AUTH_TOKEN | ❌ | 认证令牌/密钥 |
| OPENAPI_N_AUTH_VAR | ❌ | 头名称(默认 Authorization)|
| OPENAPI_N_AUTH_LOCATION | ❌ | header、query 或 cookie |
工作原理:
- 下载并解析 OpenAPI 2.0/3.0 规范
- 每个操作转换为一个 UTCP 工具
- 工具名 = OpenAPI 规范中的 operationId
- 工具描述 = OpenAPI 规范中的 summary 或 description
- 支持 API Key、Bearer、Basic 和 OAuth2 认证
Credits / 致谢
This project is built on top of amazing open-source work:
- UTCP (Universal Tool Calling Protocol) - The protocol that makes this possible
- @utcp/code-mode - Code execution capabilities
- @utcp/sdk - UTCP SDK
- @modelcontextprotocol/sdk - MCP SDK by Anthropic
License
MIT © 2025 reinn
