valdex
v1.0.4
Published
Runtime type validation with TypeScript type inference
Maintainers
Readme
valdex
Runtime type validation with TypeScript type inference
Validate unknown data at runtime and get automatic TypeScript type narrowing—without separate schema objects or class instances.
Why valdex?
Runtime validation libraries typically require you to define schemas separately and instantiate them before use. This creates distance between where you validate and where you consume the data.
Valdex takes a different approach: validate inline, exactly where you need it. No jumping between schema definitions and usage points. No maintaining separate DTO classes or validator instances.
// Traditional approach - schema defined elsewhere
const userSchema = z.object({ name: z.string(), age: z.number() });
const user = userSchema.parse(data);
// valdex - validate at point of use
validate(data, { name: String, age: Number });
// data is now typed as { name: string, age: number }This is particularly useful when working with:
- Database query results (mysql2, pg, etc.)
- External API responses (axios, fetch)
- Message queue payloads
- Any
unknownoranytyped data that needs runtime verification
Installation
npm install valdexFeatures
- Zero dependencies: No external dependencies
- Type inference: Automatic TypeScript type narrowing after validation
- Inline validation: Validate where you use, not where you define
- Nested structures: Full support for nested objects and arrays
- Optional/Nullable: Flexible handling of optional and nullable fields
Usage
Basic Validation
import { validate } from 'valdex';
const data: unknown = await fetchData();
validate(data, {
name: String,
age: Number,
active: Boolean
});
// TypeScript now knows the exact type of data
data.name // string
data.age // number
data.active // booleanNested Objects
validate(data, {
user: {
id: Number,
profile: {
name: String,
email: String
}
}
});
data.user.profile.name // stringArrays
validate(data, {
tags: [String], // string[]
items: [{ // { id: number, name: string }[]
id: Number,
name: String
}]
});
data.tags[0] // string
data.items[0].id // numberOptional Fields
Use Optional() to allow undefined values:
import { validate, Optional } from 'valdex';
validate(data, {
required: String,
optional: Optional(String), // string | undefined
optionalObject: Optional({ // { id: number } | undefined
id: Number
}),
optionalArray: Optional([Number]) // number[] | undefined
});Nullable Fields
Use Nullable() to allow null values:
import { validate, Nullable } from 'valdex';
validate(data, {
required: String,
nullable: Nullable(String), // string | null
nullableObject: Nullable({ // { id: number } | null
id: Number
})
});Combining Optional and Nullable
import { validate, Optional, Nullable } from 'valdex';
validate(data, {
field: Optional(Nullable(String)) // string | undefined | null
});Supported Types
| Constructor | TypeScript Type |
|-------------|-----------------|
| String | string |
| Number | number |
| Boolean | boolean |
| Array | any[] |
| Object | object |
| Date | Date |
Error Handling
When validation fails, a RuntimeTypeError is thrown:
import { validate, RuntimeTypeError } from 'valdex';
try {
validate(data, { count: Number });
} catch (error) {
if (error instanceof RuntimeTypeError) {
console.error(error.message);
// "count must be Number, but got String. Actual value: hello"
}
}How It Works
- Fields not declared in the schema but present in data are ignored
- All declared fields are required by default (no
undefinedornull) - Use
Optional()to allowundefined - Use
Nullable()to allownull NaNis not considered a validNumber
License
MIT
