npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

venice-ai-sdk-provider

v1.1.17

Published

Venice AI provider for the Vercel AI SDK

Readme

Venice Provider for Vercel AI SDK

The Venice provider for the Vercel AI SDK gives access to uncensored, private AI models on the Venice API. Venice offers OpenAI-compatible endpoints with zero data retention and access to models like DeepSeek R1, Llama 3.1, Qwen, and more.

Setup

# For pnpm
pnpm add venice-ai-sdk-provider

# For npm
npm install venice-ai-sdk-provider

# For yarn
yarn add venice-ai-sdk-provider

Provider Instance

You can import the default provider instance venice from venice-ai-sdk-provider if you have set VENICE_API_KEY environment variable:

import { venice } from 'venice-ai-sdk-provider';
const model = venice("venice-uncensored");

Or instance it manually:

import { createVenice } from 'venice-ai-sdk-provider';
const venice = createVenice({ apiKey: "your-api-key" });
const model = venice("venice-uncensored");

Example

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('venice-uncensored'),
    prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});

Supported models

This list is not definitive. Venice regularly adds new models to their system. You can find the latest list of models here.

Venice-Specific Features

Web Search

Enable real-time web search with citations on all Venice text models:

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('venice-uncensored'),
    prompt: 'What are the latest developments in AI?',
    providerOptions: {
        venice: {
            veniceParameters: {
                enableWebSearch: 'auto',
            },
        },
    },
});

Reasoning Mode

Enable advanced step-by-step reasoning with visible thinking process:

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('qwen3-235b-a22b-thinking-2507'),
    prompt: 'Solve: If x + 2y = 10 and 3x - y = 5, what are x and y?',
    providerOptions: {
        venice: {
            veniceParameters: {
                stripThinkingResponse: false,
            },
        },
    },
});

Reasoning Effort

Control the depth of reasoning for models that support it:

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('gemini-3-pro-preview'),
    prompt: 'Prove that there are infinitely many primes',
    providerOptions: {
        venice: {
            reasoningEffort: 'high',
        },
    },
});

Options: low (fast, minimal thinking), medium (default, balanced), high (deep thinking, best for complex problems).

Tool Calling

Venice supports function calling on compatible models:

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('qwen3-next-80b),
    tools: {
        get_weather: {
            description: 'Get current weather for a location',
            parameters: z.object({
                location: z.string().describe('City name'),
            }),
            execute: async ({ location }) => {
                return { temperature: 72, condition: 'sunny' };
            },
        },
    },
    prompt: 'What is the weather like in New York?',
});

Vision

Process images with vision-compatible models. Venice supports two ways to provide images:

Option 1: Using image URL

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
    model: venice('mistral-31-24b'),
    messages: [
        {
            role: 'user',
            content: [
                { type: 'text', text: 'What do you see in this image?' },
                {
                    type: 'image_url',
                    image_url: { url: 'https://example.com/image.jpg' },
                },
            ],
        },
    ],
});

Option 2: Using image data (base64)

import { venice } from 'venice-ai-sdk-provider';
import { generateText } from 'ai';
import { readFile } from 'fs/promises';

const imageBuffer = await readFile('path/to/image.jpg');
const imageBase64 = imageBuffer.toString('base64');

const { text } = await generateText({
    model: venice('mistral-31-24b'),
    messages: [
        {
            role: 'user',
            content: [
                { type: 'text', text: 'What do you see in this image?' },
                {
                    type: 'image_url',
                    image_url: { url: `data:image/jpeg;base64,${imageBase64}` },
                },
            ],
        },
    ],
});

Note: Use vision-capable models like mistral-31-24b for image analysis.

Embeddings

Venice supports embedding models for semantic search and RAG pipelines:

import { embed } from 'ai';
import { venice } from 'venice-ai-sdk-provider';

const { embedding } = await embed({
    model: venice.textEmbeddingModel('text-embedding-bge-m3'),
    value: 'sunny day at the beach',
});

console.log(embedding);

API Key Configuration

Set your Venice API key as an environment variable:

export VENICE_API_KEY=your-api-key-here

Or pass it directly when creating a provider instance:

import { createVenice } from 'venice-ai-sdk-provider';

const venice = createVenice({ apiKey: 'your-api-key' });

Learn More