npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

vision-tools-mcp

v0.1.17

Published

MCP Server for vision-tools-api

Readme

VisionAgent MCP Server

npm build

Beta – v0.1
This project is early access and subject to breaking changes until v1.0.

VisionAgent MCP Server v0.1 - Overview

Modern LLM “agents” call external tools through the Model Context Protocol (MCP). VisionAgent MCP is a lightweight, side-car MCP server that runs locally on STDIN/STDOUT, translating each tool call from an MCP-compatible client (Claude Desktop, Cursor, Cline, etc.) into an authenticated HTTPS request to Landing AI’s VisionAgent REST APIs. The response JSON, plus any images or masks, is streamed back to the model so that you can issue natural-language computer-vision and document-analysis commands from your editor without writing custom REST code or loading an extra SDK.

📸 Demo

https://github.com/user-attachments/assets/2017fa01-0e7f-411c-a417-9f79562627b7

🧰 Supported Use Cases (v0.1)

| Capability | Description | | ----------------------------- | ----------------------------------------------------------------------------------------------------------------- | | agentic-document-analysis | Parse PDFs / images to extract text, tables, charts, and diagrams taking into account layouts and other visual cues. Web Version here.| | text-to-object-detection | Detect free-form prompts (“all traffic lights”) using OWLv2 / CountGD / Florence-2 / Agentic Object Detection (Web Version here); outputs bounding boxes. | | text-to-instance-segmentation | Pixel-perfect masks via Florence-2 + Segment-Anything-v2 (SAM-2). | | activity-recognition | Recognise multiple activities in video with start/end timestamps. | | depth-pro | High-resolution monocular depth estimation for single images. |

Run npm run generate-tools whenever VisionAgent releases new endpoints. The script fetches the latest OpenAPI spec and regenerates the local tool map automatically.

🗺 Table of Contents

  1. Quick Start
  2. Configuration
  3. Example Prompts
  4. Architecture & Flow
  5. Developer Guide
  6. Troubleshooting
  7. Contributing
  8. Security & Privacy

🚀 Quick Start

Get Your VisionAgent API Key

If you do not have a VisionAgent API key, create an account and obtain your API key.

# 1  Install
npm install -g vision-tools-mcp

# 2  Configure your MCP client with the following settings:
{
  "mcpServers": {
    "VisionAgent": {
      "command": "npx",
      "args": ["vision-tools-mcp"],
      "env": {
        "VISION_AGENT_API_KEY": "<YOUR_API_KEY>",
        "OUTPUT_DIRECTORY": "/path/to/output/directory",
        "IMAGE_DISPLAY_ENABLED": "true" # or false, see below
      }
    }
  }
}
  1. Open your MCP-aware client.
  2. Download street.png (from the assets folder in this directory, or you can choose any test image).
  3. Paste the prompt below (or any prompt):
Detect all traffic lights in /path/to/mcp/vision-agent-mcp/assets/street.png

If your client supports inline resources, you’ll see bounding-box overlays; otherwise, the PNG is saved to your output directory, and the chat shows its path.

Prerequisites

| Software | Minimum Version | | ------------------------ | ---------------------------------------- | | Node.js | 20 (LTS) | | VisionAgent account | Any paid or free tier (needs API key) | | MCP client | Claude Desktop / Cursor / Cline / etc. |

⚙️ Configuration

| ENV var | Required | Default | Purpose | | ----------------------- | -------- | ---------- | ------------------------------------------------------ | | VISION_AGENT_API_KEY | Yes | — | Landing AI auth token. | | OUTPUT_DIRECTORY | No | — | Where rendered images / masks / depth maps are stored. | | IMAGE_DISPLAY_ENABLED | No | true | false ➜ skip rendering |

Sample MCP client entry (.mcp.json for VS Code / Cursor)

{
  "mcpServers": {
    "VisionAgent": {
      "command": "npx",
      "args": ["vision-tools-mcp"],
      "env": {
        "VISION_AGENT_API_KEY": "912jkefief09jfjkMfoklwOWdp9293jefklwfweLQWO9jfjkMfoklwDK",
        "OUTPUT_DIRECTORY": "/Users/me/documents/mcp/test",
        "IMAGE_DISPLAY_ENABLED": "false"
      }
    }
  }
}

For MCP clients without image display capabilities, like Cursor, set IMAGE_DISPLAY_ENABLED to False. For MCP clients with image display capabilities, like Claude Desktop, set IMAGE_DISPLAY_ENABLED to true to visualize tool outputs. Generally, MCP clients that support resources (see this list: https://modelcontextprotocol.io/clients) will support image display.

💡 Example Prompts

| Scenario | Prompt (after uploading file) | | ---------------------------- | ----------------------------------------------------------------------------------------- | | Invoice extraction | “Extract vendor, invoice date & total from this PDF using agentic-document-analysis.” | | Pedrestrian Recognition | “Locate every pedestrian in street.jpg via text-to-object-detection.” | | Agricultural segmentation | “Segment all tomatoes in kitchen.png with text-to-instance-segmentation.” | | Activity recognition (video) | “Identify activities occurring in match.mp4 via activity-recognition.” | | Depth estimation | “Produce a depth map for selfie.png using depth-pro.” |

🏗 Architecture & Flow

┌────────────────────┐ 1. human prompt            ┌───────────────────┐
│ MCP-capable client │───────────────────────────▶│  VisionAgent MCP │
│  (Cursor, Claude)  │                            │   (this repo)     │
└────────────────────┘                            └─────────▲─────────┘
            ▲  6. rendered PNG / JSON                     │ 2. JSON tool call
            │                                             │
            │ 5. preview path / data         3. HTTPS     │
            │                                             ▼
       local disk  ◀──────────┐                Landing AI VisionAgent
                               └──────────────  Cloud APIs
                                           4. JSON / media blob
  1. Prompt → tool-call The client converts your natural-language prompt into a structured MCP call.
  2. Validation The server validates args with Zod schemas derived from the live OpenAPI spec.
  3. Forward An authenticated Axios request hits the VisionAgent endpoint.
  4. Response JSON + any base64 media are returned.
  5. Visualization If enabled, masks / boxes / depth maps are rendered to files.
  6. Return to chat The MCP client receives data + file paths (or inline previews).

🧑‍💻 Developer Guide

Here’s how to dive into the code, add new endpoints, or troubleshoot issues.

Installation & Build

  1. Clone the repository:

    git clone https://github.com/landing-ai/vision-agent-mcp.git
  2. Navigate into the project directory:

    cd vision-agent-mcp
  3. Install dependencies:

    npm install
  4. Build the project:

    npm run build

Environment Variables

  • VISION_AGENT_API_KEY - Required API key for VisionAgent authentication
  • OUTPUT_DIRECTORY - Optional directory for saving processed outputs (supports relative and absolute paths)
  • IMAGE_DISPLAY_ENABLED - Set to "true" to enable image visualization features

Client Configuration

After building, configure your MCP client with the following settings:

{
  "mcpServers": {
    "VisionAgent": {
      "command": "node",
      "args": [
        "/path/to/build/index.js"
      ],
      "env": {
        "VISION_AGENT_API_KEY": "<YOUR_API_KEY>",
        "OUTPUT_DIRECTORY": "../../output",
        "IMAGE_DISPLAY_ENABLED": "true"
      }
    }
  }
}

Note: Replace /path/to/build/index.js with the actual path to your built index.js file, and set your environment variables as needed. For MCP clients without image display capabilities, like Cursor, set IMAGE_DISPLAY_ENABLED to False. For MCP clients with image display capabilities, like Claude Desktop, set IMAGE_DISPLAY_ENABLED to true to visualize tool outputs. Generally, MCP clients that support resources (see this list: https://modelcontextprotocol.io/clients) will support image display.

📑 Scripts & Commands

| Script | Purpose | | ------------------------ | ----------------------------------------------------------- | | npm run build | Compile TypeScript → build/ (adds executable bit). | | npm run start | Build and run (node build/index.js). | | npm run typecheck | Type-only check (tsc --noEmit). | | npm run generate-tools | Fetch latest OpenAPI and regenerate toolDefinitionMap.ts. | | npm run build:all | Convenience: npm run build + npm run generate-tools. |

Pro Tip: If you modify any files under src/ or want to pick up new endpoints from VisionAgent, run npm run build:all to recompile + regenerate tool definitions.

📂 Project Layout

vision-agent-mcp/
├── .eslintrc.json              # ESLint config (optional)
├── .gitignore                  # Ignore node_modules, build/, .env, etc.
├── jest.config.js              # Placeholder for future unit tests
├── mcp-va.md                   # Draft docs (incomplete)
├── package.json                # npm metadata, scripts, dependencies
├── package-lock.json           # Lockfile
├── tsconfig.json               # TypeScript compiler config
├── .env                        # Your environment variables (not committed)
│
├── src/                        # TypeScript source code
│   ├── generateTools.ts        # Dev script: fetch OpenAPI → generate MCP tool definitions (Zod schemas)
│   ├── index.ts                # Entry point: load .env, start MCP server, handle signals
│   ├── toolDefinitionMap.ts    # Auto-generated MCP tool definitions (don’t edit by hand)
│   ├── toolUtils.ts            # Helpers to build MCP tool objects (metadata, descriptions)
│   ├── types.ts                # Core TS interfaces (MCP, environment config, etc.)
│   │
│   ├── server/                 # MCP server logic
│   │   ├── index.ts            # Create & start the MCP server (Server + Stdio transport)
│   │   ├── handlers.ts         # `handleListTools` & `handleCallTool` implementations
│   │   ├── visualization.ts    # Post-process & save image/video outputs (masks, boxes, depth maps)
│   │   └── config.ts           # Load & validate .env, export SERVER_CONFIG & EnvConfig
│   │
│   ├── utils/                  # Generic utilities
│   │   ├── file.ts             # File handling (base64 encode images/PDFs, read streams)
│   │   └── http.ts             # Axios wrappers & error formatting
│   │
│   └── validation/             # Zod schema generation & argument validation
│       └── schema.ts           # Convert JSON Schema → Zod, validate incoming tool args
│
├── build/                      # Compiled JavaScript (generated after `npm run build`)
│   ├── index.js
│   ├── generateTools.js
│   ├── toolDefinitionMap.js
│   └── …                       # Mirror of `src/` structure
│
├── output/                     # Runtime artifacts (bounding boxes, masks, depth maps, etc.)
│
└── assets/                     # Static assets (e.g., demo.gif)
    └── demo.gif

🔍 Key Components

  1. src/generateTools.ts

    • Fetches https://api.va.landing.ai/openapi.json (VisionAgent’s public OpenAPI).
    • Filters endpoints via a whitelist (or you can disable filtering to include all).
    • Converts JSON Schema → Zod schemas, writes toolDefinitionMap.ts with a Map<string, McpToolDefinition>.
    • Run: npm run generate-tools.
  2. src/toolDefinitionMap.ts

    • Contains a map of tool names → MCP definitions (name, description, inputSchema, endpoint, HTTP method).
    • Generated automatically—do NOT edit by hand.
  3. src/server/handlers.ts

    • Implements handleListTools: returns [ { name, description, inputSchema } ].

    • Implements handleCallTool:

      • Validates incoming arguments with Zod.
      • If file-based args (e.g., imagePath, pdfPath), reads & base64-encodes via src/utils/file.ts.
      • Builds a multipart/form-data or JSON payload for Axios.
      • Calls VisionAgent endpoint, catches errors, returns MCP-compliant JSON response.
      • If IMAGE_DISPLAY_ENABLED=true, calls src/server/visualization.ts to save PNGs/JSON.
  4. src/server/visualization.ts

    • Post-processes masks (base64 → PNG).
    • Optionally overlays bounding boxes or segmentation masks on the original image, saves to OUTPUT_DIRECTORY.
    • Returns file paths in MCP result so your client can render them.
  5. src/utils/file.ts

    • readFileAsBase64(path: string): Promise<string>: Reads any binary (image, PDF, video) and returns base64.
    • loadFileStream(path: string): Returns a Node.js stream for large file uploads.
  6. src/utils/http.ts

    • Configures Axios with base URL https://api.va.landing.ai.
    • Adds Authorization: Bearer ${VISION_AGENT_API_KEY} header.
    • Wraps calls to VisionAgent endpoints, handles 4xx/5xx, formats errors into MCP error objects.
  7. src/validation/schema.ts

    • Contains helpers to convert JSON Schema (from OpenAPI) → Zod.
    • Exposes a function buildZodSchema(jsonSchema: any): ZodObject used by generateTools.ts.
  8. src/index.ts

    • Loads dotenv (reads .env).

    • Validates required env vars (VISION_AGENT_API_KEY).

    • Imports generated toolDefinitionMap.

    • Creates an MCP Server (from @modelcontextprotocol/sdk/server) with StdioServerTransport.

    • Wires ListToolshandleListTools, CallToolhandleCallTool.

    • Logs startup info:

      vision-tools-api MCP Server (v0.1.0) running on stdio, proxying to https://api.va.landing.ai
    • Listens for SIGINT/SIGTERM to gracefully shut down.

🚧 Error Handling & Logs

  • Validation Errors If you send invalid or missing parameters, the server returns:

    {
      "id": 3,
      "error": {
        "code": -32602,
        "message": "Validation error: missing required parameter ‘imagePath’"
      }
    }
  • Network Errors Axios errors (timeouts, 5xx) are caught and returned as:

    {
      "id": 4,
      "error": {
        "code": -32000,
        "message": "VisionAgent API error: 502 Bad Gateway"
      }
    }
  • Internal Exceptions Uncaught exceptions in handlers produce:

    {
      "id": 5,
      "error": {
        "code": -32603,
        "message": "Internal error: Unexpected token in JSON at position 345"
      }
    }

🛟 Troubleshooting

  • Verify VISION_AGENT_API_KEY is correct and active.
  • Free tiers have rate limits—check your dashboard.
  • Ensure outbound HTTPS to api.va.landing.ai isn’t blocked by a proxy/VPN.

The local tool map may be stale. Run:

npm run generate-tools
npm start

The code uses the Blob & FormData APIs natively introduced in Node 20. Upgrade via nvm install 20 (mac/Linux) or download from nodejs.org if on Windows.

For other issues, refer to the MCP documentation: https://modelcontextprotocol.io/quickstart/user

Also not that specific clients will have their own helpful documentation. For example, if you are using the OpenAI Agents SDK, refer to their documentation here: https://openai.github.io/openai-agents-python/mcp/

🤝 Contributing

We love PRs!

  1. Forkgit checkout -b feature/my-feature.
  2. npm run typecheck (no errors)
  3. Open a PR explaining what and why.

🔒 Security & Privacy

  • The MCP server runs locally, so no files are forwarded anywhere except Landing AI’s API endpoints you explicitly call.
  • Output images/masks are written to OUTPUT_DIRECTORY only on your machine.
  • No telemetry is collected by this project.

Made with ❤️ by the LandingAI Team.