vscode-remote-mcp
v1.0.4
Published
Enhanced MCP server for VSCode Remote integration
Readme
VSCode Remote MCP Server
Introduction
The VSCode Remote MCP Server is an enhanced implementation of the Model Context Protocol (MCP) designed specifically for VSCode Remote integration. It provides a robust set of tools for code analysis, modification, searching, and VSCode instance management through Docker containers. This server enables AI assistants and other tools to interact with your codebase and manage development environments programmatically.
Overview
Architecture
The VSCode Remote MCP Server follows a client-server architecture based on the Model Context Protocol (MCP) specification. The server exposes a set of tools and resources that clients can use to perform various operations on code files and manage VSCode instances.
┌─────────────┐ ┌───────────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ MCP Client ├─────┤ VSCode Remote MCP ├─────┤ Code Files │
│ (AI Tool) │ │ Server │ │ VSCode Instances│
│ │ │ │ │ │
└─────────────┘ └───────────────────────┘ └─────────────────┘The server implements the MCP protocol version 2024-11-05, which includes:
- Standard discovery endpoints
- Tool and resource listing
- Heartbeat notifications
- Proper error handling and timeout management
How It Works
- Tool Discovery: Clients connect to the server and discover available tools through standard MCP discovery endpoints.
- Tool Execution: Clients send requests to execute specific tools with parameters.
- Resource Management: The server manages resources for VSCode instances and associated jobs.
- Docker Integration: The server uses Docker to deploy and manage VSCode instances.
Features
Code Analysis: Analyze code files for structure, complexity, and potential issues
- Detect code structure (functions, classes, imports)
- Calculate complexity metrics
- Identify potential issues (long functions, TODO comments, etc.)
Code Modification: Modify code files with various operations
- Add new code segments
- Update existing code
- Remove code segments
- Replace code within a specified range
Code Search: Search for patterns in code files
- Support for regex patterns
- Context-aware search results
- Configurable search parameters
VSCode Instance Management: Deploy, list, and stop VSCode instances
- Deploy new VSCode instances using Docker
- List all deployed instances with their status
- Stop running instances
Job Resource Management: Manage resources for VSCode instances and jobs
- Allocate resources (CPU, memory, disk)
- Update resource allocations
- Monitor resource usage
- Deallocate resources when no longer needed
Robust Discovery Endpoints: Reliable discovery endpoints with proper timeout handling
Standardized Protocol: Follows the MCP protocol specification
Benefits
- Automation: Automate code analysis, modification, and environment management tasks
- Integration: Easily integrate with AI assistants and other tools through the MCP protocol
- Isolation: Run multiple VSCode instances in isolated Docker containers
- Resource Control: Manage and monitor resource usage for VSCode instances
- Standardization: Use a standardized protocol for tool discovery and execution
- Extensibility: Add new tools and capabilities to the server as needed
Installation
- Clone this repository:
git clone https://github.com/yourusername/vscode-remote-mcp.git- Install dependencies:
cd vscode-remote-mcp
npm install- Create a
.envfile in the root directory (optional):
PORT=3001
HOST=localhost
LOG_LEVEL=debug
REQUEST_TIMEOUT=45000
HEARTBEAT_INTERVAL=10000
MCP_DEBUG=1- Ensure Docker is installed and running on your system.
Usage
Starting the Server
Start the MCP server with the following command:
node run-mcp-server.jsConnecting to the Server
Clients can connect to the server using the MCP protocol. The server exposes the following endpoints:
- Discovery:
http://localhost:3001/mcp/discovery - Tools:
http://localhost:3001/mcp/tools - Resources:
http://localhost:3001/mcp/resources
Example: Using the Server with Roo
To integrate this MCP server with Roo, add the following configuration to .roo/mcp.json:
{
"mcpServers": {
"sparc2-mcp": {
"command": "node",
"args": [
"vscode-remote-mcp/run-mcp-server.js"
],
"alwaysAllow": [
"analyze_code",
"modify_code",
"search_code",
"deploy_vscode_instance",
"list_vscode_instances",
"stop_vscode_instance",
"manage_job_resources"
]
}
}
}Example: Deploying a VSCode Instance
To deploy a new VSCode instance:
// Example client code
const response = await client.executeTool('deploy_vscode_instance', {
name: 'my-project',
workspace_path: '/path/to/workspace',
port: 8080,
extensions: ['ms-python.python', 'dbaeumer.vscode-eslint']
});
console.log(`VSCode instance deployed at: ${response.url}`);Example: Analyzing Code
To analyze a code file:
// Example client code
const response = await client.executeTool('analyze_code', {
file_path: '/path/to/file.js',
include_metrics: true,
include_structure: true,
include_issues: true
});
console.log(response.content[0].text);Configuration
The server can be configured through environment variables:
| Variable | Description | Default |
|----------|-------------|---------|
| PORT | Port to listen on | 3001 |
| HOST | Host to bind to | localhost |
| LOG_LEVEL | Logging level | info |
| REQUEST_TIMEOUT | Timeout for requests in milliseconds | 45000 |
| HEARTBEAT_INTERVAL | Interval for heartbeat messages in milliseconds | 10000 |
| MCP_DEBUG | Enable debug logging | 0 |
| DEFAULT_PASSWORD | Default password for VSCode instances | changeme |
| DEFAULT_EXTENSIONS | Default extensions for VSCode instances | ms-python.python,dbaeumer.vscode-eslint |
| DEFAULT_CPU_LIMIT | Default CPU limit for VSCode instances | 1.0 |
| DEFAULT_MEMORY_LIMIT | Default memory limit for VSCode instances | 2g |
Advanced Options
Adding New Tools
- Create a new tool implementation in
src/tools/:
// src/tools/my_new_tool.js
async function myNewTool(params) {
// Tool implementation
return {
content: [
{
type: 'text',
text: 'Tool executed successfully'
}
],
// Additional result data
};
}
module.exports = myNewTool;- Register the tool in
src/tools/index.js:
// src/tools/index.js
const analyzeCode = require('./analyze_code');
const modifyCode = require('./modify_code');
const searchCode = require('./search_code');
const deployVSCodeInstance = require('./deploy_vscode_instance');
const listVSCodeInstances = require('./list_vscode_instances');
const stopVSCodeInstance = require('./stop_vscode_instance');
const manageJobResources = require('./manage_job_resources');
const myNewTool = require('./my_new_tool');
module.exports = {
analyze_code: analyzeCode,
modify_code: modifyCode,
search_code: searchCode,
deploy_vscode_instance: deployVSCodeInstance,
list_vscode_instances: listVSCodeInstances,
stop_vscode_instance: stopVSCodeInstance,
manage_job_resources: manageJobResources,
my_new_tool: myNewTool
};- Update the server capabilities in
run-mcp-server.js.
Custom Docker Images
You can customize the Docker image used for VSCode instances by modifying the buildDockerCommand function in src/tools/deploy_vscode_instance.js.
Resource Management
The server includes a resource management system for VSCode instances and associated jobs. You can use the manage_job_resources tool to allocate, update, and deallocate resources.
Tools Reference
analyze_code
Analyzes code files and provides insights about their structure, complexity, and potential issues.
Parameters:
file_path(required): Path to the file to analyzeinclude_metrics(optional, default: true): Whether to include complexity metricsinclude_structure(optional, default: true): Whether to include structure analysisinclude_issues(optional, default: true): Whether to include potential issues
Returns:
- File type and size information
- Complexity metrics (cyclomatic complexity, maintainability index, function count, etc.)
- Code structure (imports, functions, classes)
- Potential issues (long functions, TODO comments, console.log statements, etc.)
Example:
{
file_path: '/path/to/file.js',
include_metrics: true,
include_structure: true,
include_issues: true
}modify_code
Modifies code files with various operations like adding, updating, or removing code segments.
Parameters:
file_path(required): Path to the file to modifyoperation(required): Operation to perform (add, update, remove, replace)position(optional): Position to perform the operation at (line, column)content(optional): Content to add or updatepattern(optional): Pattern to match for update or remove operationsrange(optional): Range of lines to modify (start_line, end_line)
Returns:
- Success status
- Modification details
Example:
{
file_path: '/path/to/file.js',
operation: 'add',
position: { line: 10 },
content: 'console.log("Hello, world!");'
}search_code
Searches for patterns in code files and returns matching results with context.
Parameters:
pattern(required): Pattern to search fordirectory(optional, default: '.'): Directory to search infile_pattern(optional, default: '*'): File pattern to matchcontext_lines(optional, default: 2): Number of context lines to includemax_results(optional, default: 100): Maximum number of results to returnignore_case(optional, default: false): Whether to ignore caseuse_regex(optional, default: true): Whether to use regex
Returns:
- Matching results with context
- File paths and line numbers
Example:
{
pattern: 'function\\s+\\w+\\s*\\(',
directory: 'src',
file_pattern: '*.js',
context_lines: 2,
max_results: 50,
ignore_case: false,
use_regex: true
}deploy_vscode_instance
Deploys a new VSCode instance using Docker.
Parameters:
name(required): Instance nameworkspace_path(required): Path to workspace directoryport(optional): Port to expose (random if not specified)password(optional): Password for authenticationextensions(optional): Extensions to installcpu_limit(optional): CPU limitmemory_limit(optional): Memory limitenvironment(optional): Environment variables
Returns:
- Instance ID
- Instance name
- Port
- URL
- Status
Example:
{
name: 'my-project',
workspace_path: '/path/to/workspace',
port: 8080,
extensions: ['ms-python.python', 'dbaeumer.vscode-eslint'],
cpu_limit: 2,
memory_limit: '4g'
}list_vscode_instances
Lists all deployed VSCode instances and their status.
Parameters:
filter(optional): Filter instances by namestatus(optional, default: 'all'): Filter instances by status (running, stopped, all)
Returns:
- List of instances with details (ID, name, status, workspace path, URL, port, resource usage)
Example:
{
filter: 'my-project',
status: 'running'
}stop_vscode_instance
Stops a running VSCode instance.
Parameters:
name(required): Instance nameforce(optional, default: false): Force stop
Returns:
- Success status
- Instance name
- Status
Example:
{
name: 'my-project',
force: false
}manage_job_resources
Manages resources for VSCode instances and associated jobs.
Parameters:
job_id(required): Job IDoperation(required): Operation to perform (allocate, deallocate, update, status)resources(optional): Resources to allocate or update (cpu, memory, disk)
Returns:
- Success status
- Job ID
- Operation
- Resources
- Timestamps
Example:
{
job_id: '12345',
operation: 'allocate',
resources: {
cpu: 2,
memory: '4g',
disk: '20g'
}
}Troubleshooting
Discovery Endpoint Timeouts
If you encounter timeout issues with the discovery endpoints, check:
- Make sure the server is running and accessible
- Check the
REQUEST_TIMEOUTenvironment variable (default: 45000ms) - Enable debug logging by setting
MCP_DEBUG=1 - Run the test script:
node test-discovery-fix.js
Docker Issues
If you encounter issues with Docker:
- Make sure Docker is installed and running
- Check Docker permissions
- Check if the specified ports are available
- Check Docker logs:
docker logs <container-name>
Resource Management Issues
If you encounter issues with resource management:
- Check if the resources directory exists
- Check if the resource files are valid JSON
- Check if the job ID exists
- Check Docker resource limits
License
MIT
