websocket-mcp
v1.2.0
Published
HTTP proxy server that bridges MCP clients to multiple MCP servers via stdio, HTTP, or WebSocket
Downloads
13
Readme
WebSocket MCP
Complete MCP proxy system that bridges MCP clients to multiple servers and enables browser-based MCP servers.
Overview
This package provides both server and frontend components:
- Server: HTTP proxy that connects AI clients to multiple MCP servers via stdio, HTTP, or WebSocket
- Frontend: Browser-side transport for creating MCP servers that run in web browsers
Key Features:
- Connects AI clients to multiple MCP servers simultaneously through a single proxy
- Accepts browser-based MCP servers via WebSocket connections
- Exposes each server as an HTTP endpoint for easy client access
- Supports stdio (command-line), HTTP, and WebSocket server types
- Provides browser transport with automatic reconnection and error recovery
Use cases: Run multiple MCP servers from one proxy, enable browser-based MCP servers, centralize MCP server management.
Installation
npm install websocket-mcpServer Usage (Node.js)
Quick Start
Choose one of the following methods:
Option 1: WebSocket Arguments (Browser-based servers)
Pass server definitions as arguments. Each server has a name (how AI clients will reference it) and a WebSocket path (where browsers connect). You can specify just a name (path defaults to /{name}) or provide both name and custom path separated by a colon:
npx websocket-mcp browser-tools database-ui:/db --port 3003This creates two servers:
- browser-tools server: browsers connect to
ws://localhost:3003/browser-tools, AI clients access viahttp://localhost:3003/browser-tools - database-ui server: browsers connect to
ws://localhost:3003/db, AI clients access viahttp://localhost:3003/database-ui
The server name determines the HTTP endpoint URL that AI clients use to access the server.
Complete workflow: After starting the proxy, create browser MCP servers using the frontend transport (see Frontend Usage below) that connect to these WebSocket endpoints. AI clients can then access the browser servers through the HTTP endpoints.
Option 2: Config File (All server types)
- Create
mcp-config.json:
{
"servers": [
{
"name": "filesystem",
"type": "stdio",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"]
}
]
}- Start the server:
npx websocket-mcp --config mcp-config.json --port 3003This starts the proxy server, which will:
- Launch the filesystem MCP server as a subprocess
- Create an HTTP endpoint at
http://localhost:3003/filesystem(using the server name "filesystem") - Proxy all requests between AI clients and the filesystem server
Connect AI Clients to Your Servers
The proxy exposes each server (including browser-based ones) as an HTTP endpoint at http://localhost:3003/{serverName} using the streamable HTTP transport protocol. The {serverName} part of the URL comes from the "name" field in your configuration or argument.
Example: If you started the proxy with npx websocket-mcp browser-tools and created a browser MCP server that connected to it, AI clients can access the browser's tools at http://localhost:3003/browser-tools.
If your client supports streamable HTTP, connect directly to the endpoint. For example, with Roo Code, add this to .roo/mcp.json in your project:
{
"mcpServers": {
"browser-tools": {
"type": "streamable-http",
"url": "http://localhost:3003/browser-tools"
}
}
}For clients without streamable HTTP support, use mcp-remote as a bridge. For example, with Claude Desktop, add this to your claude_desktop_config.json file:
{
"mcpServers": {
"browser-tools": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:3003/browser-tools"]
}
}
}Result: The AI client can now call browser-specific tools like get_page_info through the proxy, which routes requests to your browser-based MCP server. This enables AI systems to interact with web content and browser capabilities that traditional command-line servers cannot provide.
Configuration
Server Types
Stdio Servers
Connect to command-line MCP servers:
{
"name": "git-tools",
"type": "stdio",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-git"]
}HTTP Servers
Connect to HTTP-based MCP servers:
{
"name": "external-api",
"type": "http",
"url": "http://localhost:3001"
}WebSocket Servers (Browser)
Accept browser-based MCP servers:
{
"name": "database-ui",
"type": "websocket",
"path": "/db"
}Configuration Properties
- name: Server identifier that becomes part of the HTTP endpoint URL (
http://localhost:3003/{name}) that AI clients use - type: How the proxy connects to the server - "stdio" (command-line), "http" (existing HTTP server), or "websocket" (browser connection)
- enabled: Whether this server should be started (optional, defaults to true, set to false to disable)
- command/args: For stdio servers - the command and arguments to launch the MCP server process
- url: For HTTP servers - the existing HTTP server URL to connect to
- path: For WebSocket servers - the WebSocket URL path where browsers should connect (defaults to
/{name})
WebSocket Endpoints
Browser-based MCP servers can connect to WebSocket endpoints:
// Browser connects to ws://localhost:3003/db
const ws = new WebSocket("ws://localhost:3003/db");Frontend Usage (Browser)
Browser-side components for creating MCP servers that run in web browsers and connect to the proxy server.
Import Path
Import frontend components from the /frontend subpath to maintain separation from server components:
import { WebSocketClientTransport } from "websocket-mcp/frontend";Quick Start
Create a browser MCP server that connects to the proxy server you started above:
import { WebSocketClientTransport } from "websocket-mcp/frontend";
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { ListToolsRequestSchema, CallToolRequestSchema } from "@modelcontextprotocol/sdk/types.js";
// Create MCP server that provides browser-specific capabilities
const server = new Server({ name: "browser-tools", version: "1.0.0" }, { capabilities: { tools: {} } });
// Add tools that only browsers can provide
server.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [
{
name: "get_page_info",
description: "Get current page title and URL",
inputSchema: { type: "object", properties: {} },
},
],
}));
server.setRequestHandler(CallToolRequestSchema, async ({ params }) => {
if (params.name === "get_page_info") {
return {
content: [{ type: "text", text: `Title: ${document.title}\nURL: ${window.location.href}` }],
};
}
throw new Error(`Unknown tool: ${params.name}`);
});
// Connect to the proxy WebSocket endpoint (matches the server name from Step 1)
const transport = new WebSocketClientTransport({
url: "ws://localhost:3003/browser-tools",
});
await server.connect(transport);
console.log("Browser MCP server connected - AI clients can now access it at http://localhost:3003/browser-tools");Important: Only one WebSocket connection should be made to each server path from the browser. For multi-tab applications, consider implementing the MCP server in a SharedWorker to share a single connection across all tabs.
Configuration Options
const transport = new WebSocketClientTransport({
url: "ws://localhost:3003/my-server", // Required: WebSocket URL to proxy server
reconnectDelay: 1000, // Initial delay before reconnection attempt (default: 1000ms)
maxReconnectDelay: 3000, // Maximum delay between reconnection attempts (default: 3000ms)
connectionTimeout: 1000, // Timeout for initial connection (default: 1000ms)
});Connection Management
The transport automatically handles:
- Connection establishment with configurable timeout
- Automatic reconnection with exponential backoff
- Error recovery from network issues
- Clean shutdown when explicitly closed
Connection Status
// Check if connected
if (transport.isConnected) {
console.log("Connected to proxy server");
}Further Reading
- Implementation Details - Architecture and internal workings of both server and frontend components
- MCP Protocol Documentation
