npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

xcomet-mcp-server

v0.3.5

Published

MCP Server for xCOMET translation quality evaluation

Downloads

935

Readme

xCOMET MCP Server

npm version MCP License: MIT

⚠️ This is an unofficial community project, not affiliated with Unbabel.

Translation quality evaluation MCP Server powered by xCOMET (eXplainable COMET).

🎯 Overview

xCOMET MCP Server provides AI agents with the ability to evaluate machine translation quality. It integrates with the xCOMET model from Unbabel to provide:

  • Quality Scoring: Scores between 0-1 indicating translation quality
  • Error Detection: Identifies error spans with severity levels (minor/major/critical)
  • Batch Processing: Evaluate multiple translation pairs efficiently (optimized single model load)
  • GPU Support: Optional GPU acceleration for faster inference
graph LR
    A[AI Agent] --> B[Node.js MCP Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>Persistent in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

🔧 Prerequisites

Python Environment

xCOMET requires Python with the following packages:

pip install "unbabel-comet>=2.2.0" fastapi uvicorn

Model Download

The first run will download the xCOMET model (~14GB for XL, ~42GB for XXL):

# Test model availability
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

Node.js

  • Node.js >= 18.0.0
  • npm or yarn

📦 Installation

# Clone the repository
git clone https://github.com/shuji-bonji/xcomet-mcp-server.git
cd xcomet-mcp-server

# Install dependencies
npm install

# Build
npm run build

🚀 Usage

With Claude Desktop (npx)

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

With Claude Code

claude mcp add xcomet -- npx -y xcomet-mcp-server

Local Installation

If you prefer a local installation:

npm install -g xcomet-mcp-server

Then configure:

{
  "mcpServers": {
    "xcomet": {
      "command": "xcomet-mcp-server"
    }
  }
}

HTTP Mode (Remote Access)

TRANSPORT=http PORT=3000 npm start

Then connect to http://localhost:3000/mcp

🛠️ Available Tools

xcomet_evaluate

Evaluate translation quality for a single source-translation pair.

Parameters: | Name | Type | Required | Description | |------|------|----------|-------------| | source | string | ✅ | Original source text | | translation | string | ✅ | Translated text to evaluate | | reference | string | ❌ | Reference translation | | source_lang | string | ❌ | Source language code (ISO 639-1) | | target_lang | string | ❌ | Target language code (ISO 639-1) | | response_format | "json" | "markdown" | ❌ | Output format (default: "json") | | use_gpu | boolean | ❌ | Use GPU for inference (default: false) |

Example:

{
  "source": "The quick brown fox jumps over the lazy dog.",
  "translation": "素早い茶色のキツネが怠惰な犬を飛び越える。",
  "source_lang": "en",
  "target_lang": "ja",
  "use_gpu": true
}

Response:

{
  "score": 0.847,
  "errors": [],
  "summary": "Good quality (score: 0.847) with 0 error(s) detected."
}

xcomet_detect_errors

Focus on detecting and categorizing translation errors.

Parameters: | Name | Type | Required | Description | |------|------|----------|-------------| | source | string | ✅ | Original source text | | translation | string | ✅ | Translated text to analyze | | reference | string | ❌ | Reference translation | | min_severity | "minor" | "major" | "critical" | ❌ | Minimum severity (default: "minor") | | response_format | "json" | "markdown" | ❌ | Output format | | use_gpu | boolean | ❌ | Use GPU for inference (default: false) |

xcomet_batch_evaluate

Evaluate multiple translation pairs in a single request.

Performance Note: With the persistent server architecture (v0.3.0+), the model stays loaded in memory. Batch evaluation processes all pairs efficiently without reloading the model.

Parameters: | Name | Type | Required | Description | |------|------|----------|-------------| | pairs | array | ✅ | Array of {source, translation, reference?} (max 500) | | source_lang | string | ❌ | Source language code | | target_lang | string | ❌ | Target language code | | response_format | "json" | "markdown" | ❌ | Output format | | use_gpu | boolean | ❌ | Use GPU for inference (default: false) | | batch_size | number | ❌ | Batch size 1-64 (default: 8). Larger = faster but uses more memory |

Example:

{
  "pairs": [
    {"source": "Hello", "translation": "こんにちは"},
    {"source": "Goodbye", "translation": "さようなら"}
  ],
  "use_gpu": true,
  "batch_size": 16
}

🔗 Integration with Other MCP Servers

xCOMET MCP Server is designed to work alongside other MCP servers for complete translation workflows:

sequenceDiagram
    participant Agent as AI Agent
    participant DeepL as DeepL MCP Server
    participant xCOMET as xCOMET MCP Server
    
    Agent->>DeepL: Translate text
    DeepL-->>Agent: Translation result
    Agent->>xCOMET: Evaluate quality
    xCOMET-->>Agent: Score + Errors
    Agent->>Agent: Decide: Accept or retry?

Recommended Workflow

  1. Translate using DeepL MCP Server (official)
  2. Evaluate using xCOMET MCP Server
  3. Iterate if quality is below threshold

Example: DeepL + xCOMET Integration

Configure both servers in Claude Desktop:

{
  "mcpServers": {
    "deepl": {
      "command": "npx",
      "args": ["-y", "@anthropic/deepl-mcp-server"],
      "env": {
        "DEEPL_API_KEY": "your-api-key"
      }
    },
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

Then ask Claude:

"Translate this text to Japanese using DeepL, then evaluate the translation quality with xCOMET. If the score is below 0.8, suggest improvements."

⚙️ Configuration

Environment Variables

| Variable | Default | Description | |----------|---------|-------------| | TRANSPORT | stdio | Transport mode: stdio or http | | PORT | 3000 | HTTP server port (when TRANSPORT=http) | | XCOMET_MODEL | Unbabel/XCOMET-XL | xCOMET model to use | | XCOMET_PYTHON_PATH | (auto-detect) | Python executable path (see below) | | XCOMET_PRELOAD | false | Pre-load model at startup (v0.3.1+) | | XCOMET_DEBUG | false | Enable verbose debug logging (v0.3.1+) |

Model Selection

Choose the model based on your quality/performance needs:

| Model | Parameters | Size | Memory | Reference | Quality | Use Case | |-------|------------|------|--------|-----------|---------|----------| | Unbabel/XCOMET-XL | 3.5B | ~14GB | ~8-10GB | Optional | ⭐⭐⭐⭐ | Recommended for most use cases | | Unbabel/XCOMET-XXL | 10.7B | ~42GB | ~20GB | Optional | ⭐⭐⭐⭐⭐ | Highest quality, requires more resources | | Unbabel/wmt22-comet-da | 580M | ~2GB | ~3GB | Required | ⭐⭐⭐ | Lightweight, faster loading |

Important: wmt22-comet-da requires a reference translation for evaluation. XCOMET models support referenceless evaluation.

Tip: If you experience memory issues or slow model loading, try Unbabel/wmt22-comet-da for faster performance with slightly lower accuracy (but remember to provide reference translations).

To use a different model, set the XCOMET_MODEL environment variable:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_MODEL": "Unbabel/XCOMET-XXL"
      }
    }
  }
}

Python Path Auto-Detection

The server automatically detects a Python environment with unbabel-comet installed:

  1. XCOMET_PYTHON_PATH environment variable (if set)
  2. pyenv versions (~/.pyenv/versions/*/bin/python3) - checks for comet module
  3. Homebrew Python (/opt/homebrew/bin/python3, /usr/local/bin/python3)
  4. Fallback: python3 command

This ensures the server works correctly even when the MCP host (e.g., Claude Desktop) uses a different Python than your terminal.

Example: Explicit Python path configuration

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PYTHON_PATH": "/Users/you/.pyenv/versions/3.11.0/bin/python3"
      }
    }
  }
}

⚡ Performance

Persistent Server Architecture (v0.3.0+)

The server uses a persistent Python FastAPI server that keeps the xCOMET model loaded in memory:

| Request | Time | Notes | |---------|------|-------| | First request | ~25-90s | Model loading (varies by model size) | | Subsequent requests | ~500ms | Model already loaded |

This provides a 177x speedup for consecutive evaluations compared to reloading the model each time.

Eager Loading (v0.3.1+)

Enable XCOMET_PRELOAD=true to pre-load the model at server startup:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PRELOAD": "true"
      }
    }
  }
}

With preload enabled, all requests are fast (~500ms), including the first one.

graph LR
    A[MCP Request] --> B[Node.js Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

Batch Processing Optimization

The xcomet_batch_evaluate tool processes all pairs with a single model load:

| Pairs | Estimated Time | |-------|----------------| | 10 | ~30-40 sec | | 50 | ~1-1.5 min | | 100 | ~2 min |

GPU vs CPU Performance

| Mode | 100 Pairs (Estimated) | |------|----------------------| | CPU (batch_size=8) | ~2 min | | GPU (batch_size=16) | ~20-30 sec |

Note: GPU requires CUDA-compatible hardware and PyTorch with CUDA support. If GPU is not available, set use_gpu: false (default).

Best Practices

1. Let the persistent server do its job

With v0.3.0+, the model stays in memory. Multiple xcomet_evaluate calls are now efficient:

✅ Fast: First call loads model, subsequent calls reuse it
   xcomet_evaluate(pair1)  # ~90s (model loads)
   xcomet_evaluate(pair2)  # ~500ms (model cached)
   xcomet_evaluate(pair3)  # ~500ms (model cached)

2. For many pairs, use batch evaluation

✅ Even faster: Batch all pairs in one call
   xcomet_batch_evaluate(allPairs)  # Optimal throughput

3. Memory considerations

  • XCOMET-XL requires ~8-10GB RAM
  • For large batches (500 pairs), ensure sufficient memory
  • If memory is limited, split into smaller batches (100-200 pairs)

Auto-Restart (v0.3.1+)

The server automatically recovers from failures:

  • Monitors health every 30 seconds
  • Restarts after 3 consecutive health check failures
  • Up to 3 restart attempts before giving up

📊 Quality Score Interpretation

| Score Range | Quality | Recommendation | |-------------|---------|----------------| | 0.9 - 1.0 | Excellent | Ready for use | | 0.7 - 0.9 | Good | Minor review recommended | | 0.5 - 0.7 | Fair | Post-editing needed | | 0.0 - 0.5 | Poor | Re-translation recommended |

🔍 Troubleshooting

Common Issues

"No module named 'comet'"

Cause: Python environment without unbabel-comet installed.

Solution:

# Check which Python is being used
python3 -c "import sys; print(sys.executable)"

# Install all required packages
pip install "unbabel-comet>=2.2.0" fastapi uvicorn

# Or specify Python path explicitly
export XCOMET_PYTHON_PATH=/path/to/python3

Model download fails or times out

Cause: Large model files (~14GB for XL) require stable internet connection.

Solution:

# Pre-download the model manually
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

GPU not detected

Cause: PyTorch not installed with CUDA support.

Solution:

# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available())"

# If False, reinstall PyTorch with CUDA
pip install torch --index-url https://download.pytorch.org/whl/cu118

Slow performance on Mac (MPS)

Cause: Mac MPS (Metal Performance Shaders) has compatibility issues with some operations.

Solution: The server automatically uses num_workers=1 for Mac MPS compatibility. For best performance on Mac, use CPU mode (use_gpu: false).

High memory usage or crashes

Cause: XCOMET-XL requires ~8-10GB RAM.

Solutions:

  1. Use the persistent server (v0.3.0+): Model loads once and stays in memory, avoiding repeated memory spikes
  2. Use a lighter model: Set XCOMET_MODEL=Unbabel/wmt22-comet-da for lower memory usage (~3GB)
  3. Reduce batch size: For large batches, process in smaller chunks (100-200 pairs)
  4. Close other applications: Free up RAM before running large evaluations
# Check available memory
free -h  # Linux
vm_stat | head -5  # macOS

VS Code or IDE crashes during evaluation

Cause: High memory usage from the xCOMET model (~8-10GB for XL).

Solution:

  • With v0.3.0+, the model loads once and stays in memory (no repeated loading)
  • If memory is still an issue, use a lighter model: XCOMET_MODEL=Unbabel/wmt22-comet-da
  • Close other memory-intensive applications before evaluation

Getting Help

If you encounter issues:

  1. Check the GitHub Issues
  2. Enable debug logging by checking Claude Desktop's Developer Mode logs
  3. Open a new issue with:
    • Your OS and Python version
    • The error message
    • Your configuration (without sensitive data)

🧪 Development

# Install dependencies
npm install

# Build TypeScript
npm run build

# Watch mode
npm run dev

# Test with MCP Inspector
npm run inspect

📋 Changelog

See CHANGELOG.md for version history and updates.

📝 License

MIT License - see LICENSE for details.

🙏 Acknowledgments

📚 References